Suppr超能文献

一种用于密码子使用优化的统计物理方法。

A statistical-physics approach for codon usage optimisation.

作者信息

Luna-Cerralbo David, Blasco-Machín Irene, Adame-Pérez Susana, Lampaya Verónica, Larraga Ana, Alejo Teresa, Martínez-Oliván Juan, Broset Esther, Bruscolini Pierpaolo

机构信息

Department of Theoretical Physics, Faculty of Science, University of Zaragoza, c/ Pedro Cerbuna s/n, Zaragoza, 50009, Spain.

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, c/ Mariano Esquillor s/n, Zaragoza, 50018, Spain.

出版信息

Comput Struct Biotechnol J. 2024 Jul 30;23:3050-3064. doi: 10.1016/j.csbj.2024.07.020. eCollection 2024 Dec.

Abstract

The concept of "codon optimisation" involves adjusting the coding sequence of a target protein to account for the inherent codon preferences of a host species and maximise protein expression in that species. However, there is still a lack of consensus on the most effective approach to achieve optimal results. Existing methods typically depend on heuristic combinations of different variables, leaving the user with the final choice of the sequence hit. In this study, we propose a new statistical-physics model for codon optimisation. This model, called the Nearest-Neighbour interaction (NN) model, links the probability of any given codon sequence to the "interactions" between neighbouring codons. We used the model to design codon sequences for different proteins of interest, and we compared our sequences with the predictions of some commercial tools. In order to assess the importance of the pair interactions, we additionally compared the NN model with a simpler method (Ind) that disregards interactions. It was observed that the NN method yielded similar Codon Adaptation Index (CAI) values to those obtained by other commercial algorithms, despite the fact that CAI was not explicitly considered in the algorithm. By utilising both the NN and Ind methods to optimise the reporter protein luciferase, and then analysing the translation performance in human cell lines and in a mouse model, we found that the NN approach yielded the highest protein expression . Consequently, we propose that the NN model may prove advantageous in biotechnological applications, such as heterologous protein expression or mRNA-based therapies.

摘要

“密码子优化”的概念涉及调整目标蛋白的编码序列,以考虑宿主物种固有的密码子偏好,并在该物种中最大化蛋白表达。然而,对于实现最佳结果的最有效方法仍缺乏共识。现有方法通常依赖于不同变量的启发式组合,最终由用户选择序列命中结果。在本研究中,我们提出了一种用于密码子优化的新统计物理模型。该模型称为最近邻相互作用(NN)模型,它将任何给定密码子序列的概率与相邻密码子之间的“相互作用”联系起来。我们使用该模型为不同的目标蛋白设计密码子序列,并将我们的序列与一些商业工具的预测结果进行比较。为了评估配对相互作用的重要性,我们还将NN模型与一种更简单的不考虑相互作用的方法(Ind)进行了比较。结果发现,尽管该算法中未明确考虑密码子适应指数(CAI),但NN方法产生的CAI值与其他商业算法得到的相似。通过使用NN和Ind方法优化报告蛋白荧光素酶,然后分析其在人类细胞系和小鼠模型中的翻译性能,我们发现NN方法产生的蛋白表达最高。因此,我们认为NN模型在生物技术应用中可能具有优势,例如异源蛋白表达或基于mRNA的疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验