Suppr超能文献

通过定点复制应激诱导同源重组。

Induction of homologous recombination by site-specific replication stress.

机构信息

Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States.

Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States.

出版信息

DNA Repair (Amst). 2024 Oct;142:103753. doi: 10.1016/j.dnarep.2024.103753. Epub 2024 Aug 16.

Abstract

DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.

摘要

DNA 复制压力是基因组不稳定的主要原因之一。为了应对复制压力,细胞可以利用依赖同源重组的复制重起始机制来恢复复制叉的推进,从而维持基因组的完整性。在这篇综述中,我们概述了已开发的各种方法,这些方法可用于诱导真核细胞中特定位置的复制叉停滞或崩溃。特别地,我们强调了最近关于由特定位置的蛋白-DNA 障碍和单链断裂引起的复制相关重组机制的研究,并讨论了这些发现对我们理解这些形式的压力对基因组稳定性的影响的贡献。

相似文献

1
Induction of homologous recombination by site-specific replication stress.
DNA Repair (Amst). 2024 Oct;142:103753. doi: 10.1016/j.dnarep.2024.103753. Epub 2024 Aug 16.
2
EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
PLoS Genet. 2015 Dec 18;11(12):e1005675. doi: 10.1371/journal.pgen.1005675. eCollection 2015 Dec.
3
Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination.
J Mol Biol. 2013 Nov 29;425(23):4733-44. doi: 10.1016/j.jmb.2013.04.023. Epub 2013 Apr 30.
4
NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.
Cell Cycle. 2017 Feb 16;16(4):335-347. doi: 10.1080/15384101.2016.1259038. Epub 2016 Nov 28.
5
The multifaceted functions of homologous recombination in dealing with replication-associated DNA damages.
DNA Repair (Amst). 2023 Sep;129:103548. doi: 10.1016/j.dnarep.2023.103548. Epub 2023 Aug 1.
6
ATR Signaling Uncouples the Role of RAD51 Paralogs in Homologous Recombination and Replication Stress Response.
Cell Rep. 2019 Oct 15;29(3):551-559.e4. doi: 10.1016/j.celrep.2019.09.008.
7
Building up and breaking down: mechanisms controlling recombination during replication.
Crit Rev Biochem Mol Biol. 2017 Aug;52(4):381-394. doi: 10.1080/10409238.2017.1304355. Epub 2017 Mar 22.
8
Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
Mutat Res. 2014 Aug-Sep;766-767:66-72. doi: 10.1016/j.mrfmmm.2014.06.003. Epub 2014 Jun 22.
9
Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
Mutat Res. 2014 Aug-Sep;766-767:66-72. doi: 10.1016/j.mrfmmm.2014.06.003. Epub 2014 Jun 22.
10
A fork in the road: Where homologous recombination and stalled replication fork protection part ways.
Semin Cell Dev Biol. 2021 May;113:14-26. doi: 10.1016/j.semcdb.2020.07.004. Epub 2020 Jul 9.

引用本文的文献

2
Structural mechanism of strand exchange by the RAD51 filament.
Elife. 2025 Aug 18;14:RP107114. doi: 10.7554/eLife.107114.
3
A large C-terminal Rad52 segment acts as a chaperone to Form and Stabilize Rad51 Filaments.
Nat Commun. 2025 Jul 1;16(1):5589. doi: 10.1038/s41467-025-60664-x.
4
Mechanisms and regulation of DNA end resection in the maintenance of genome stability.
Nat Rev Mol Cell Biol. 2025 Mar 25. doi: 10.1038/s41580-025-00841-4.

本文引用的文献

1
HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing.
Nat Commun. 2024 Jul 10;15(1):5789. doi: 10.1038/s41467-024-50080-y.
3
Structure and repair of replication-coupled DNA breaks.
Science. 2024 Aug 16;385(6710):eado3867. doi: 10.1126/science.ado3867.
4
Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast.
iScience. 2024 Feb 6;27(3):109120. doi: 10.1016/j.isci.2024.109120. eCollection 2024 Mar 15.
5
Completing genome replication outside of S phase.
Mol Cell. 2023 Oct 19;83(20):3596-3607. doi: 10.1016/j.molcel.2023.08.023. Epub 2023 Sep 15.
9
Ubx5-Cdc48 assists the protease Wss1 at DNA-protein crosslink sites in yeast.
EMBO J. 2023 Jul 3;42(13):e113609. doi: 10.15252/embj.2023113609. Epub 2023 May 5.
10
RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation.
Mol Cell. 2023 Apr 6;83(7):1061-1074.e6. doi: 10.1016/j.molcel.2023.02.008. Epub 2023 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验