Suppr超能文献

异位表达 Myomaker 和 Myomixer 在慢肌细胞中诱导慢肌融合和肌纤维死亡。

Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death.

机构信息

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.

出版信息

J Genet Genomics. 2024 Nov;51(11):1187-1203. doi: 10.1016/j.jgg.2024.08.006. Epub 2024 Aug 30.

Abstract

Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.

摘要

斑马鱼胚胎具有两种主要类型的肌纤维,即慢肌纤维和快肌纤维,它们具有不同的细胞融合模式。快肌细胞可以融合,而慢肌细胞则不能。在这里,我们表明肌生成素在慢肌和快肌前体中都有表达,而肌融合素则只存在于快肌细胞中。慢肌分化的调节因子 Prdm1a 的缺失导致肌生成素和肌融合素的强烈表达和慢肌细胞融合。这种异常融合进一步通过在转基因模型中的慢肌细胞中直接异位表达肌生成素或肌融合素来证实。利用转基因模型,我们表明慢肌和快肌细胞之间的异源融合可以改变慢肌细胞的迁移和基因表达。此外,肌生成素和肌融合素的过表达也会破坏细胞膜的完整性,导致肌肉细胞死亡。总之,这项研究表明,纤维类型特异性融合蛋白的表达对于防止鱼类胚胎中慢肌和快肌纤维之间的不当融合至关重要,这突出了精确调节融合基因表达以维持肌肉纤维完整性和特异性的必要性。

相似文献

1
Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death.
J Genet Genomics. 2024 Nov;51(11):1187-1203. doi: 10.1016/j.jgg.2024.08.006. Epub 2024 Aug 30.
2
Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.
Dev Biol. 2017 Mar 1;423(1):24-33. doi: 10.1016/j.ydbio.2017.01.019. Epub 2017 Feb 1.
3
Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle.
Dev Biol. 2020 Jun 1;462(1):85-100. doi: 10.1016/j.ydbio.2020.03.005. Epub 2020 Mar 10.
4
Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11950-11955. doi: 10.1073/pnas.1715229114. Epub 2017 Oct 23.
5
Loss of Myomixer Results in Defective Myoblast Fusion, Impaired Muscle Growth, and Severe Myopathy in Zebrafish.
Mar Biotechnol (NY). 2022 Oct;24(5):1023-1038. doi: 10.1007/s10126-022-10159-3. Epub 2022 Sep 9.
6
Control of muscle formation by the fusogenic micropeptide myomixer.
Science. 2017 Apr 21;356(6335):323-327. doi: 10.1126/science.aam9361. Epub 2017 Apr 6.
7
Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3864-3869. doi: 10.1073/pnas.1800052115. Epub 2018 Mar 26.
8
The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration.
Cell Mol Life Sci. 2020 Apr;77(8):1551-1569. doi: 10.1007/s00018-019-03341-9. Epub 2019 Oct 23.
9
Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth.
Mar Biotechnol (NY). 2019 Feb;21(1):111-123. doi: 10.1007/s10126-018-9865-x. Epub 2018 Nov 22.
10
Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1.
Dev Biol. 2008 Dec 15;324(2):226-35. doi: 10.1016/j.ydbio.2008.09.020. Epub 2008 Sep 27.

引用本文的文献

本文引用的文献

1
Cryo-EM structures of Myomaker reveal a molecular basis for myoblast fusion.
Nat Struct Mol Biol. 2023 Nov;30(11):1746-1754. doi: 10.1038/s41594-023-01110-8. Epub 2023 Sep 28.
2
Expression of Myomaker and Myomerger in myofibers causes muscle pathology.
Skelet Muscle. 2023 May 1;13(1):8. doi: 10.1186/s13395-023-00317-z.
3
Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
Biochim Biophys Acta Biomembr. 2023 Mar;1865(3):184112. doi: 10.1016/j.bbamem.2022.184112. Epub 2022 Dec 22.
4
Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion.
Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2202490119. doi: 10.1073/pnas.2202490119. Epub 2022 Sep 12.
5
Loss of Myomixer Results in Defective Myoblast Fusion, Impaired Muscle Growth, and Severe Myopathy in Zebrafish.
Mar Biotechnol (NY). 2022 Oct;24(5):1023-1038. doi: 10.1007/s10126-022-10159-3. Epub 2022 Sep 9.
6
Comparative hybridization protocols in zebrafish.
Biotechniques. 2022 Sep;73(3):123-130. doi: 10.2144/btn-2022-0038. Epub 2022 Sep 6.
7
Evolution of a chordate-specific mechanism for myoblast fusion.
Sci Adv. 2022 Sep 2;8(35):eadd2696. doi: 10.1126/sciadv.add2696.
8
Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events.
Dev Cell. 2022 Sep 12;57(17):2095-2110.e5. doi: 10.1016/j.devcel.2022.08.002. Epub 2022 Aug 25.
9
The cellular architecture and molecular determinants of the zebrafish fusogenic synapse.
Dev Cell. 2022 Jul 11;57(13):1582-1597.e6. doi: 10.1016/j.devcel.2022.05.016. Epub 2022 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验