Suppr超能文献

使用重组子进行连续多重噬菌体基因组编辑。

Continuous multiplexed phage genome editing using recombitrons.

作者信息

Fishman Chloe B, Crawford Kate D, Bhattarai-Kline Santi, Poola Darshini, Zhang Karen, González-Delgado Alejandro, Rojas-Montero Matías, Shipman Seth L

机构信息

Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.

Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA.

出版信息

Nat Biotechnol. 2024 Sep 5. doi: 10.1038/s41587-024-02370-5.

Abstract

Bacteriophage genome editing can enhance the efficacy of phages to eliminate pathogenic bacteria in patients and in the environment. However, current methods for editing phage genomes require laborious screening, counterselection or in vitro construction of modified genomes. Here, we present a scalable approach that uses modified bacterial retrons called recombitrons to generate recombineering donor DNA paired with single-stranded binding and annealing proteins for integration into phage genomes. This system can efficiently create genome modifications in multiple phages without the need for counterselection. The approach also supports larger insertions and deletions, which can be combined with simultaneous counterselection for >99% efficiency. Moreover, we show that the process is continuous, with more edits accumulating the longer the phage is cultured with the host, and multiplexable. We install up to five distinct mutations on a single lambda phage genome without counterselection in only a few hours of hands-on time and identify a residue-level epistatic interaction in the T7 gp17 tail fiber.

摘要

噬菌体基因组编辑可以提高噬菌体在患者体内和环境中消除病原菌的功效。然而,目前编辑噬菌体基因组的方法需要费力的筛选、反选择或体外构建修饰后的基因组。在此,我们提出了一种可扩展的方法,该方法使用称为重组子的修饰细菌反转录子来生成与单链结合和退火蛋白配对的重组工程供体DNA,以便整合到噬菌体基因组中。该系统可以在多个噬菌体中高效地产生基因组修饰,而无需反选择。该方法还支持更大的插入和缺失,可与同时进行的反选择相结合,效率>99%。此外,我们表明该过程是连续的,噬菌体与宿主培养的时间越长,积累的编辑就越多,并且是可多重化的。我们在仅几个小时的实际操作时间内,在单个λ噬菌体基因组上安装了多达五个不同的突变,且无需反选择,并在T7 gp17尾丝中鉴定出一个残基水平的上位性相互作用。

相似文献

1
Continuous multiplexed phage genome editing using recombitrons.
Nat Biotechnol. 2024 Sep 5. doi: 10.1038/s41587-024-02370-5.
2
Continuous Multiplexed Phage Genome Editing Using Recombitrons.
bioRxiv. 2023 Mar 25:2023.03.24.534024. doi: 10.1101/2023.03.24.534024.
3
Phage-based delivery of CRISPR-associated transposases for targeted bacterial editing.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2504853122. doi: 10.1073/pnas.2504853122. Epub 2025 Jul 25.
4
A recombineering-based platform for high-throughput genomic editing in .
Appl Environ Microbiol. 2025 Jul 23;91(7):e0019325. doi: 10.1128/aem.00193-25. Epub 2025 Jun 12.
7
Single cell viral tagging of reveals rare bacteriophages omitted by other techniques.
Gut Microbes. 2025 Dec;17(1):2526719. doi: 10.1080/19490976.2025.2526719. Epub 2025 Aug 3.
8
Coinfecting phages impede each other's entry into the cell.
Curr Biol. 2024 Jul 8;34(13):2841-2853.e18. doi: 10.1016/j.cub.2024.05.032. Epub 2024 Jun 14.
9
Multispecies biofilm architecture determines bacterial exposure to phages.
PLoS Biol. 2022 Dec 22;20(12):e3001913. doi: 10.1371/journal.pbio.3001913. eCollection 2022 Dec.

引用本文的文献

1
Structural basis of the RNA-mediated Retron-Eco2 oligomerization.
Cell Discov. 2025 Sep 2;11(1):73. doi: 10.1038/s41421-025-00823-y.
3
Genome editing of phylogenetically distinct bacteria using portable retron-mediated recombineering.
bioRxiv. 2025 Jul 9:2025.06.16.660010. doi: 10.1101/2025.06.16.660010.
4
Disassembly activates Retron-Septu for antiphage defense.
Science. 2025 Jun 12:eadv3344. doi: 10.1126/science.adv3344.
5
The Application of DNA Viruses to Biotechnology.
Viruses. 2025 Mar 14;17(3):414. doi: 10.3390/v17030414.
6
Controlling and controlled elements: highlights of the year in mobile DNA research.
Mob DNA. 2024 Dec 31;15(1):27. doi: 10.1186/s13100-024-00340-x.
8
An experimental census of retrons for DNA production and genome editing.
Nat Biotechnol. 2024 Sep 17. doi: 10.1038/s41587-024-02384-z.
9
Phage genome engineering with retrons.
Nat Biotechnol. 2024 Sep 9. doi: 10.1038/s41587-024-02392-z.
10
High Throughput Variant Libraries and Machine Learning Yield Design Rules for Retron Gene Editors.
bioRxiv. 2024 Jul 9:2024.07.08.602561. doi: 10.1101/2024.07.08.602561.

本文引用的文献

1
Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice.
Nat Biotechnol. 2024 Feb;42(2):265-274. doi: 10.1038/s41587-023-01759-y. Epub 2023 May 4.
2
Phage therapy: From biological mechanisms to future directions.
Cell. 2023 Jan 5;186(1):17-31. doi: 10.1016/j.cell.2022.11.017.
3
Rapid and Accurate Assembly of Large DNA Assisted by Packaging of Bacteriophage.
ACS Synth Biol. 2022 Dec 16;11(12):4113-4122. doi: 10.1021/acssynbio.2c00419. Epub 2022 Nov 29.
4
Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing.
Nat Microbiol. 2022 Dec;7(12):1967-1979. doi: 10.1038/s41564-022-01258-x. Epub 2022 Oct 31.
5
Approaches for bacteriophage genome engineering.
Trends Biotechnol. 2023 May;41(5):669-685. doi: 10.1016/j.tibtech.2022.08.008. Epub 2022 Sep 15.
6
Recording gene expression order in DNA by CRISPR addition of retron barcodes.
Nature. 2022 Aug;608(7921):217-225. doi: 10.1038/s41586-022-04994-6. Epub 2022 Jul 27.
7
Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems.
Nature. 2022 Sep;609(7925):144-150. doi: 10.1038/s41586-022-05091-4. Epub 2022 Jul 18.
8
Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria.
Cell Chem Biol. 2022 Sep 15;29(9):1434-1445.e7. doi: 10.1016/j.chembiol.2022.06.003. Epub 2022 Jul 11.
9
Retron reverse transcriptase termination and phage defense are dependent on host RNase H1.
Nucleic Acids Res. 2022 Apr 8;50(6):3490-3504. doi: 10.1093/nar/gkac177.
10
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.
Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0. Epub 2022 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验