Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Neurotherapeutics. 2024 Jul;21(4):e00443. doi: 10.1016/j.neurot.2024.e00443. Epub 2024 Sep 13.
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
脑白质营养不良是一种影响大脑白质的进行性单基因疾病。为满足这一患者群体的迫切需求,目前有多项基因治疗试验正在进行。我们全面检索了截至 2024 年 8 月在 www.clinicaltrials.gov 上登记的所有基因治疗临床试验,并查阅了促成临床转化的相关临床前研究。迄今为止,大约有 50 种脑白质营养不良已被描述,但仅有 8 种存在基因治疗临床试验:异染性脑白质营养不良、X 连锁肾上腺脑白质营养不良、球形细胞脑白质营养不良、Canavan 病、巨大轴索神经病、GM2 神经节苷脂贮积症、Alexander 病和 Pelizaeus-Merzbacher 病。是什么导致这些特定疾病出现基因治疗试验?有哪些临床前数据或疾病背景在起作用?对于这 8 种疾病,我们首先描述其病理生理学和临床表现。然后讨论基因治疗的传递途径、靶向细胞类型、传递方式、剂量和时机对治疗效果的影响。我们注意到,在某些脑白质营养不良中,同种异体造血干细胞移植的应用使得即使缺乏可用的动物模型,也可以加速向临床转化。在其他脑白质营养不良中,小动物和大动物模型研究为实验性基因治疗的临床转化提供了依据。脑白质营养不良的人类临床试验包括体外慢病毒基因传递、体内 AAV 介导的基因传递和鞘内反义寡核苷酸方法。我们列出了每种方法相关的不良事件,特别关注了遗传毒性和免疫毒性。我们回顾了与插入突变和免疫反应相关的事件监测和管理。本综述中的数据表明,基因治疗虽然很有前景,但需要进行系统监测,以考虑到脆弱的疾病生物学和新技术相关的不良事件。