Suppr超能文献

计算机辅助药物重新利用支持安普那韦、达芦那韦和沙奎那韦靶向多重耐药性尿路致病性酶。

In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic .

作者信息

Halder Umesh C

机构信息

Department of Zoology, Raniganj Girls' College, Searsole -Rajbari, Raniganj, Paschim Bardhaman, West Bengal 713358 India.

出版信息

Indian J Microbiol. 2024 Sep;64(3):1153-1214. doi: 10.1007/s12088-024-01282-x. Epub 2024 Apr 26.

Abstract

UNLABELLED

Multidrug resistance is a paramount impediment to successful treatment of most hospital acquired bacterial infections. A plethora of bacterial genera exhibit differential levels of resistance to the existing antibiotics. Prevalent Uropathogenic Escherichia coli or UPEC conduce high mortality among them. Multi-Drug Resistant bacterial strains utilize precise mechanisms to bypass effects of antibiotics. This is probably due to their familiar genomic origin. In this article drug repositioning method have been utilised to target 23 enzymes of UPEC strains viz. CFT073, 536 and UTI89. 3-D drug binding motifs have been predicted using SPRITE and ASSAM servers that compare amino acid side chain similarities. From the hit results anti-viral drugs have been considered for their uniqueness and specificity. Out of 14 anti-viral drugs 3 anti-HIV drugs viz. Amprenavir, Darunavir and Saquinavir have selected for maximum binding score or drug targetability. Finally, active sites of the enzymes were analyzed using GASS-WEB for eloquent drug interference. Further analyses with the active sites of all the enzymes showed that the three selected anti-HIV drugs were very much potent to inhibit their active sites. Combination or sole application of Amprenavir, Darunavir and Saquinavir to MDR-UPEC infections may leads to cure and inhibition of mortality.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12088-024-01282-x.

摘要

未标记

多重耐药性是成功治疗大多数医院获得性细菌感染的首要障碍。大量细菌属对现有抗生素表现出不同程度的耐药性。常见的尿路致病性大肠杆菌(UPEC)在其中导致高死亡率。多重耐药细菌菌株利用精确机制绕过抗生素的作用。这可能归因于它们相似的基因组起源。在本文中,采用药物重新定位方法针对UPEC菌株(即CFT073、536和UTI89)的23种酶。使用SPRITE和ASSAM服务器预测了三维药物结合基序,这些服务器比较氨基酸侧链相似性。从命中结果中,考虑了抗病毒药物的独特性和特异性。在14种抗病毒药物中,3种抗HIV药物(即安普那韦、达芦那韦和沙奎那韦)因最大结合分数或药物靶向性而被选中。最后,使用GASS-WEB分析酶的活性位点以进行有效的药物干扰。对所有酶的活性位点的进一步分析表明,所选的三种抗HIV药物非常有效地抑制了它们的活性位点。将安普那韦、达芦那韦和沙奎那韦联合或单独应用于多重耐药UPEC感染可能会治愈并抑制死亡率。

补充信息

在线版本包含可在10.1007/s12088-024-01282-x获取的补充材料。

相似文献

1
In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic .
Indian J Microbiol. 2024 Sep;64(3):1153-1214. doi: 10.1007/s12088-024-01282-x. Epub 2024 Apr 26.
3
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
Role of GuaB, the inosine-5'-monophosphate dehydrogenase of uropathogenic pathogenicity: a key factor for bladder infection.
Microbiol Spectr. 2025 Aug 5;13(8):e0022125. doi: 10.1128/spectrum.00221-25. Epub 2025 Jun 17.
10
Structured treatment interruptions (STI) in chronic unsuppressed HIV infection in adults.
Cochrane Database Syst Rev. 2006 Jul 19;2006(3):CD006148. doi: 10.1002/14651858.CD006148.

本文引用的文献

1
Enhancing the Efficacy of Chloramphenicol Therapy for by Targeting the Secondary Resistome.
Antibiotics (Basel). 2024 Jan 12;13(1):73. doi: 10.3390/antibiotics13010073.
3
Reducing antimicrobial resistance by practicing better infection prevention and control.
Am J Infect Control. 2023 Sep;51(9):1063-1066. doi: 10.1016/j.ajic.2023.02.014.
5
High incidence of fosfomycin-resistant uropathogenic E. coli among children.
BMC Infect Dis. 2023 Jul 17;23(1):475. doi: 10.1186/s12879-023-08449-9.
6
Multidrug Resistance of From Outpatient Uncomplicated Urinary Tract Infections in a Large United States Integrated Healthcare Organization.
Open Forum Infect Dis. 2023 May 23;10(7):ofad287. doi: 10.1093/ofid/ofad287. eCollection 2023 Jul.
7
Emerging Antimicrobial Resistance.
Mod Pathol. 2023 Sep;36(9):100249. doi: 10.1016/j.modpat.2023.100249. Epub 2023 Jun 21.
8
Multidrug Resistance Urinary Tract Infection in Chronic Kidney Disease Patients: An Observational Study.
Cureus. 2023 May 5;15(5):e38571. doi: 10.7759/cureus.38571. eCollection 2023 May.
10
Darunavir ethanolate: Repurposing an anti-HIV drug in COVID-19 treatment.
Eur J Med Chem Rep. 2021 Dec;3:100013. doi: 10.1016/j.ejmcr.2021.100013. Epub 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验