Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea.
Department of Psychiatry, Institute of Behavioral Science in Medicine, and Institute for Innovation in Digital Healthcare, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
Ann Med. 2024 Dec;56(1):2405077. doi: 10.1080/07853890.2024.2405077. Epub 2024 Sep 19.
We aimed to improve the performance of sleep prediction algorithms by increasing the data amount, adding variables reflecting psychological state, and adjusting the data length.
We used ActiGraph GT3X+ and Galaxy Watch Active2 to collect physical activity and light exposure data. We collected heart rate variability (HRV) data with the Galaxy Watch. We evaluated the performance of sleep prediction algorithms based on different data sources (wearable devices only, sleep diary only, or both), data lengths (1, 2, or 3 days), and analysis methods. We defined the target outcome, 'good sleep', as ≥90% sleep efficiency.
Among 278 participants who denied having sleep disturbance, we used data including 2136 total days and nights from 230 participants. The performance of the sleep prediction algorithms improved with an increased amount of data and added HRV data. The model with the best performance was the extreme gradient boosting model; XGBoost, using both sources combined data with HRV, and 2-day data (accuracy=.85, area under the curve =.80).
The results show that the performance of the sleep prediction models improved by increasing the data amount and adding HRV data. Further studies targeting insomnia patients and applied researches on non-pharmacological insomnia treatment are needed.
通过增加数据量、添加反映心理状态的变量以及调整数据长度,提高睡眠预测算法的性能。
我们使用 ActiGraph GT3X+ 和 Galaxy Watch Active2 来收集身体活动和光照数据。我们使用 Galaxy Watch 收集心率变异性(HRV)数据。我们根据不同的数据源(仅可穿戴设备、仅睡眠日记或两者兼有)、数据长度(1、2 或 3 天)和分析方法来评估睡眠预测算法的性能。我们将“良好睡眠”定义为睡眠效率≥90%。
在 278 名否认有睡眠障碍的参与者中,我们使用了 230 名参与者的 2136 个总天数和夜晚的数据。随着数据量的增加和添加 HRV 数据,睡眠预测算法的性能得到了提高。性能最佳的模型是极端梯度提升模型(XGBoost),该模型同时使用了两种来源的数据(包括 HRV)和 2 天的数据(准确性=0.85,曲线下面积=0.80)。
结果表明,通过增加数据量和添加 HRV 数据,睡眠预测模型的性能得到了提高。需要针对失眠患者进行进一步的研究,并开展非药物性失眠治疗的应用研究。