Suppr超能文献

基于可穿戴设备的身体活动、光照暴露和心率变异性数据预测睡眠。

Predicting sleep based on physical activity, light exposure, and Heart rate variability data using wearable devices.

机构信息

Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea.

Department of Psychiatry, Institute of Behavioral Science in Medicine, and Institute for Innovation in Digital Healthcare, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Ann Med. 2024 Dec;56(1):2405077. doi: 10.1080/07853890.2024.2405077. Epub 2024 Sep 19.

Abstract

OBJECTIVE

We aimed to improve the performance of sleep prediction algorithms by increasing the data amount, adding variables reflecting psychological state, and adjusting the data length.

MATERIALS AND METHODS

We used ActiGraph GT3X+ and Galaxy Watch Active2 to collect physical activity and light exposure data. We collected heart rate variability (HRV) data with the Galaxy Watch. We evaluated the performance of sleep prediction algorithms based on different data sources (wearable devices only, sleep diary only, or both), data lengths (1, 2, or 3 days), and analysis methods. We defined the target outcome, 'good sleep', as ≥90% sleep efficiency.

RESULTS

Among 278 participants who denied having sleep disturbance, we used data including 2136 total days and nights from 230 participants. The performance of the sleep prediction algorithms improved with an increased amount of data and added HRV data. The model with the best performance was the extreme gradient boosting model; XGBoost, using both sources combined data with HRV, and 2-day data (accuracy=.85, area under the curve =.80).

CONCLUSIONS

The results show that the performance of the sleep prediction models improved by increasing the data amount and adding HRV data. Further studies targeting insomnia patients and applied researches on non-pharmacological insomnia treatment are needed.

摘要

目的

通过增加数据量、添加反映心理状态的变量以及调整数据长度,提高睡眠预测算法的性能。

材料与方法

我们使用 ActiGraph GT3X+ 和 Galaxy Watch Active2 来收集身体活动和光照数据。我们使用 Galaxy Watch 收集心率变异性(HRV)数据。我们根据不同的数据源(仅可穿戴设备、仅睡眠日记或两者兼有)、数据长度(1、2 或 3 天)和分析方法来评估睡眠预测算法的性能。我们将“良好睡眠”定义为睡眠效率≥90%。

结果

在 278 名否认有睡眠障碍的参与者中,我们使用了 230 名参与者的 2136 个总天数和夜晚的数据。随着数据量的增加和添加 HRV 数据,睡眠预测算法的性能得到了提高。性能最佳的模型是极端梯度提升模型(XGBoost),该模型同时使用了两种来源的数据(包括 HRV)和 2 天的数据(准确性=0.85,曲线下面积=0.80)。

结论

结果表明,通过增加数据量和添加 HRV 数据,睡眠预测模型的性能得到了提高。需要针对失眠患者进行进一步的研究,并开展非药物性失眠治疗的应用研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验