Suppr超能文献

基于隔离的生物分子分类器的工程共享资源。

Engineering Sequestration-Based Biomolecular Classifiers with Shared Resources.

机构信息

CSHL Course in Synthetic Biology 2022, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, United States.

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

ACS Synth Biol. 2024 Oct 18;13(10):3231-3245. doi: 10.1021/acssynbio.4c00270. Epub 2024 Sep 20.

Abstract

Constructing molecular classifiers that enable cells to recognize linear and nonlinear input patterns would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been designed, the effects of biological constraints such as resource limitation and competitive binding on the function of those classifiers have been left unexplored. Here, we first demonstrate the design of a sigma factor-based perceptron as a molecular classifier working based on the principles of molecular sequestration between the sigma factor and its antisigma molecule. We then investigate how the output of the biomolecular perceptron, i.e., its response pattern or decision boundary, is affected by the competitive binding of sigma factors to a pool of shared and limited resources of core RNA polymerase. Finally, we reveal the influence of sharing limited resources on multilayer perceptron neural networks and outline design principles that enable the construction of nonlinear classifiers using sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.

摘要

构建能够使细胞识别线性和非线性输入模式的分子分类器将扩展工程细胞的生物计算能力,从而挖掘其在诊断和治疗应用中的潜力。虽然已经设计了几种生物分子分类器方案,但生物限制(如资源限制和竞争结合)对这些分类器功能的影响仍未得到探索。在这里,我们首先展示了基于 sigma 因子的感知器的设计,作为一种分子分类器,其工作原理是基于 sigma 因子与其反 sigma 分子之间的分子隔离。然后,我们研究了生物分子感知器的输出,即其响应模式或决策边界,如何受到 sigma 因子与核心 RNA 聚合酶共享和有限资源池之间的竞争结合的影响。最后,我们揭示了共享有限资源对多层感知器神经网络的影响,并概述了设计原则,这些原则使我们能够在存在竞争资源共享效应的情况下使用基于 sigma 的生物分子神经网络构建非线性分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c423/11494701/c5cb7d297f86/sb4c00270_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验