Suppr超能文献

利用机器学习技术研究空气污染物和气象因素对新冠病毒感染传播和严重程度的滞后效应。

The Lag -Effects of Air Pollutants and Meteorological Factors on COVID-19 Infection Transmission and Severity: Using Machine Learning Techniques.

机构信息

Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

出版信息

J Res Health Sci. 2024 Aug 1;24(3):e00622. doi: 10.34172/jrhs.2024.157. Epub 2024 Jul 31.

Abstract

BACKGROUND

Exposure to air pollution is a major health problem worldwide. This study aimed to investigate the effect of the level of air pollutants and meteorological parameters with their related lag time on the transmission and severity of coronavirus disease 19 (COVID-19) using machine learning (ML) techniques in Shiraz, Iran. An ecological study.

METHODS

In this ecological research, three main ML techniques, including decision trees, random forest, and extreme gradient boosting (XGBoost), have been applied to correlate meteorological parameters and air pollutants with infection transmission, hospitalization, and death due to COVID-19 from 1 October 2020 to 1 March 2022. These parameters and pollutants included particulate matter (PM2), sulfur dioxide (SO ), nitrogen dioxide (NO ), nitric oxide (NO), ozone (O ), carbon monoxide (CO), temperature (T), relative humidity (RH), dew point (DP), air pressure (AP), and wind speed (WS).

RESULTS

Based on the three ML techniques, NO (lag 5 day), CO (lag 4), and T (lag 25) were the most important environmental features affecting the spread of COVID-19 infection. In addition, the most important features contributing to hospitalization due to COVID-19 included RH (lag 28), T (lag 11), and O (lag 10). After adjusting for the number of infections, the most important features affecting the number of deaths caused by COVID-19 were NO (lag 20), O (lag 22), and NO (lag 23).

CONCLUSION

Our findings suggested that epidemics caused by COVID-19 and (possibly) similarly viral transmitted infections, including flu, air pollutants, and meteorological parameters, can be used to predict their burden on the community and health system. In addition, meteorological and air quality data should be included in preventive measures.

摘要

背景

暴露于空气污染是全球范围内的一个主要健康问题。本研究旨在利用机器学习(ML)技术,调查污染物水平和气象参数及其相关滞后时间对伊朗设拉子市 2020 年 10 月 1 日至 2022 年 3 月 1 日期间冠状病毒病 19(COVID-19)传播和严重程度的影响。这是一项生态研究。

方法

在这项生态研究中,三种主要的 ML 技术,包括决策树、随机森林和极端梯度提升(XGBoost),已被应用于将气象参数和空气污染物与 COVID-19 的感染传播、住院和死亡相关联。这些参数和污染物包括颗粒物(PM2.5)、二氧化硫(SO2)、二氧化氮(NO2)、一氧化氮(NO)、臭氧(O3)、一氧化碳(CO)、温度(T)、相对湿度(RH)、露点(DP)、气压(AP)和风速(WS)。

结果

基于三种 ML 技术,NO(滞后 5 天)、CO(滞后 4 天)和 T(滞后 25 天)是影响 COVID-19 感染传播的最重要的环境特征。此外,导致 COVID-19 住院的最重要特征包括 RH(滞后 28 天)、T(滞后 11 天)和 O3(滞后 10 天)。在调整感染人数后,影响 COVID-19 死亡人数的最重要特征是 NO(滞后 20 天)、O3(滞后 22 天)和 NO2(滞后 23 天)。

结论

我们的研究结果表明,COVID-19 引发的疫情和(可能)类似的病毒传播感染,包括流感,空气污染物和气象参数,可以用于预测其对社区和卫生系统的负担。此外,应将气象和空气质量数据纳入预防措施中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/566d/11380733/57da2cb76e30/jrhs-24-e00622-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验