Suppr超能文献

AlphaFold之后的结构生物学展望:工具、局限与前景

An outlook on structural biology after AlphaFold: tools, limits and perspectives.

作者信息

Rosignoli Serena, Pacelli Maddalena, Manganiello Francesca, Paiardini Alessandro

机构信息

Department of Biochemical sciences "A. Rossi Fanelli", Sapienza Università di Roma, Italy.

出版信息

FEBS Open Bio. 2025 Feb;15(2):202-222. doi: 10.1002/2211-5463.13902. Epub 2024 Sep 23.

Abstract

AlphaFold and similar groundbreaking, AI-based tools, have revolutionized the field of structural bioinformatics, with their remarkable accuracy in ab-initio protein structure prediction. This success has catalyzed the development of new software and pipelines aimed at incorporating AlphaFold's predictions, often focusing on addressing the algorithm's remaining challenges. Here, we present the current landscape of structural bioinformatics shaped by AlphaFold, and discuss how the field is dynamically responding to this revolution, with new software, methods, and pipelines. While the excitement around AI-based tools led to their widespread application, it is essential to acknowledge that their practical success hinges on their integration into established protocols within structural bioinformatics, often neglected in the context of AI-driven advancements. Indeed, user-driven intervention is still as pivotal in the structure prediction process as in complementing state-of-the-art algorithms with functional and biological knowledge.

摘要

AlphaFold以及类似的具有开创性的基于人工智能的工具,凭借其在从头开始的蛋白质结构预测中令人瞩目的准确性,彻底改变了结构生物信息学领域。这一成功推动了旨在纳入AlphaFold预测结果的新软件和流程的开发,这些开发通常侧重于解决该算法仍然存在的挑战。在此,我们展示了由AlphaFold塑造的结构生物信息学的当前格局,并讨论该领域如何通过新的软件、方法和流程动态地应对这一变革。虽然基于人工智能的工具引发的热潮导致了它们的广泛应用,但必须认识到,它们的实际成功取决于将其整合到结构生物信息学的既定协议中,而这一点在人工智能驱动的进步背景下常常被忽视。事实上,用户驱动的干预在结构预测过程中仍然至关重要,就如同用功能和生物学知识补充最先进的算法一样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca94/11788754/a2ef483c77d2/FEB4-15-202-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验