Suppr超能文献

基于质谱的蛋白质组学用于三阴性乳腺癌的分类和治疗优化

Mass Spectrometry-Based Proteomics for Classification and Treatment Optimisation of Triple Negative Breast Cancer.

作者信息

Metwali Essraa, Pennington Stephen

机构信息

School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland.

King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Jeddah-Makka Expressway, Jeddah 22384, Saudi Arabia.

出版信息

J Pers Med. 2024 Sep 5;14(9):944. doi: 10.3390/jpm14090944.

Abstract

Triple-negative breast cancer (TNBC) presents a significant medical challenge due to its highly invasive nature, high rate of metastasis, and lack of drug-targetable receptors, which together lead to poor prognosis and limited treatment options. The traditional treatment guidelines for early TNBC are based on a multimodal approach integrating chemotherapy, surgery, and radiation and are associated with low overall survival and high relapse rates. Therefore, the approach to treating early TNBC has shifted towards neoadjuvant treatment (NAC), given to the patient before surgery and which aims to reduce tumour size, reduce the risk of recurrence, and improve the pathological complete response (pCR) rate. However, recent studies have shown that NAC is associated with only 30% of patients achieving pCR. Thus, novel predictive biomarkers are essential if treatment decisions are to be optimised and chemotherapy toxicities minimised. Given the heterogeneity of TNBC, mass spectrometry-based proteomics technologies offer valuable tools for the discovery of targetable biomarkers for prognosis and prediction of toxicity. These biomarkers can serve as critical targets for therapeutic intervention. This review aims to provide a comprehensive overview of TNBC diagnosis and treatment, highlighting the need for a new approach. Specifically, it highlights how mass spectrometry-based can address key unmet clinical needs by identifying novel protein biomarkers to distinguish and early prognostication between TNBC patient groups who are being treated with NAC. By integrating proteomic insights, we anticipate enhanced treatment personalisation, improved clinical outcomes, and ultimately, increased survival rates for TNBC patients.

摘要

三阴性乳腺癌(TNBC)因其具有高度侵袭性、高转移率以及缺乏可药物靶向的受体,带来了重大的医学挑战,这些因素共同导致预后不良和治疗选择有限。早期TNBC的传统治疗指南基于化疗、手术和放疗相结合的多模式方法,且总体生存率低、复发率高。因此,早期TNBC的治疗方法已转向新辅助治疗(NAC),即在手术前给予患者,旨在缩小肿瘤大小、降低复发风险并提高病理完全缓解(pCR)率。然而,最近的研究表明,NAC仅使30%的患者实现pCR。因此,如果要优化治疗决策并将化疗毒性降至最低,新型预测生物标志物至关重要。鉴于TNBC的异质性,基于质谱的蛋白质组学技术为发现用于预后和毒性预测的可靶向生物标志物提供了有价值的工具。这些生物标志物可作为治疗干预的关键靶点。本综述旨在全面概述TNBC的诊断和治疗,强调需要一种新方法。具体而言,它强调了基于质谱的方法如何通过识别新型蛋白质生物标志物来满足关键的未满足临床需求,以区分接受NAC治疗的TNBC患者群体并进行早期预后评估。通过整合蛋白质组学见解,我们预计可增强治疗的个性化、改善临床结果,并最终提高TNBC患者的生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8148/11432759/1a697aa7fb72/jpm-14-00944-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验