Suppr超能文献

氨基酸代谢相关基因作为潜在的生物标志物和 MATN3 在胃腺癌中的作用:一项基于生物信息学、孟德尔随机化和实验验证的研究。

Amino acid metabolism-related genes as potential biomarkers and the role of MATN3 in stomach adenocarcinoma: A bioinformatics, mendelian randomization and experimental validation study.

机构信息

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Department of Oncology, Hubei Cancer Hospital, Wuhan 430000, China.

出版信息

Int Immunopharmacol. 2024 Dec 25;143(Pt 1):113253. doi: 10.1016/j.intimp.2024.113253. Epub 2024 Sep 30.

Abstract

BACKGROUND

Stomach adenocarcinoma (STAD) is a major contributor to cancer-related mortality worldwide. Alterations in amino acid metabolism, which is integral to protein synthesis, have been observed across various tumor types. However, the prognostic significance of amino acid metabolism-related genes in STAD remains underexplored.

METHODS

Transcriptomic gene expression and clinical data for STAD patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Amino acid metabolism-related gene sets were sourced from the Gene Set Enrichment Analysis (GSEA) database. A prognostic model was built using LASSO Cox regression based on the TCGA cohort and validated with GEO datasets (GSE84433, GSE84437, GSE84426). Kaplan-Meier analysis compared overall survival (OS) between high- and low-risk groups, and ROC curves assessed model accuracy. A nomogram predicted 1-, 3-, and 5-year survival. Copy number variations (CNVs) in model genes were visualized using data from the Xena platform, and mutation profiles were analyzed with "maftools" to create a waterfall plot. KEGG and GO enrichment analyses were performed to explore biological mechanisms. Immune infiltration and related functions were evaluated via ssGSEA, and Spearman correlation analyzed associations between risk scores and immune components. The TIDE database predicted immunotherapy efficacy, while FDA-approved drug sensitivity was assessed through CellMiner database. The role of MATN3 in STAD was further examined in vitro and in vivo, including amino acid-targeted metabolomic sequencing to assess its impact on metabolism. Finally, Mendelian randomization (MR) analysis evaluated the causal relationship between the model genes and gastric cancer.

RESULTS

In this study, we developed a prognostic risk model for STAD based on three amino acid metabolism-related genes (SERPINE1, NRP1, MATN3) using LASSO regression analysis. CNV amplification was common in SERPINE1 and NRP1, while CNV deletion frequently occurred in MATN3. STAD patients were classified into high- and low-risk groups based on the median risk score, with the high-risk group showing worse prognosis. A nomogram incorporating the risk score and clinical factors was created to estimate 1-, 3-, and 5-year survival rates. Distinct mutation profiles were observed between risk groups, with KEGG pathway analysis showing immune-related pathways enriched in the high-risk group. High-risk scores were significantly associated with the C6 (TGF-β dominant) subtype, while low-risk scores correlated with the C4 (lymphocyte-depleted) subtype. Higher risk scores also indicated increased immune infiltration, enhanced immune functions, lower tumor purity, and poorer immunotherapy response. Model genes were linked to anticancer drug sensitivity. Manipulating MATN3 expression showed that it promoted STAD cell proliferation and migration in vitro and tumor growth in vivo. Metabolomic sequencing revealed that MATN3 knockdown elevated levels of 30 amino acid metabolites, including alpha-aminobutyric acid, glycine, and aspartic acid, while reducing (S)-β-Aminoisobutyric acid and argininosuccinic acid. MR analysis found a significant causal effect of NRP1 on gastric cancer, but no causal relationship for MATN3 or SERPINE1.

CONCLUSION

In conclusion, the amino acid metabolism-related prognostic model shows promise as a valuable biomarker for predicting the clinical prognosis, selecting immunotherapy and drug treatment for STAD patients. Furthermore, our study has shed light on the potential value of the MATN3 as a promising strategy for combating the progression of STAD.

摘要

背景

胃腺癌(STAD)是全球癌症相关死亡的主要原因。已观察到各种肿瘤类型中氨基酸代谢的改变,这是蛋白质合成的重要组成部分。然而,STAD 中氨基酸代谢相关基因的预后意义仍未得到充分探索。

方法

从癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)中获取 STAD 患者的转录组基因表达和临床数据。氨基酸代谢相关基因集来自基因集富集分析(GSEA)数据库。使用 TCGA 队列中的 LASSO Cox 回归构建预后模型,并使用 GEO 数据集(GSE84433、GSE84437、GSE84426)进行验证。Kaplan-Meier 分析比较了高风险和低风险组之间的总生存期(OS),ROC 曲线评估了模型的准确性。列线图预测了 1、3 和 5 年的生存率。使用 Xena 平台的数据可视化模型基因的拷贝数变异(CNV),并使用“maftools”分析突变谱创建瀑布图。进行 KEGG 和 GO 富集分析以探索生物学机制。通过 ssGSEA 评估免疫浸润和相关功能,并通过 Spearman 相关性分析风险评分与免疫成分之间的关联。TIDE 数据库预测免疫治疗效果,而通过 CellMiner 数据库评估 FDA 批准的药物敏感性。进一步在体外和体内研究 MATN3 在 STAD 中的作用,包括评估其对代谢影响的靶向氨基酸代谢组学测序。最后,通过孟德尔随机化(MR)分析评估模型基因与胃癌之间的因果关系。

结果

本研究基于 LASSO 回归分析,使用三个氨基酸代谢相关基因(SERPINE1、NRP1、MATN3)开发了 STAD 的预后风险模型。SERPINE1 和 NRP1 中常见 CNV 扩增,而 MATN3 中常见 CNV 缺失。根据中位数风险评分将 STAD 患者分为高风险和低风险组,高风险组预后较差。创建了包含风险评分和临床因素的列线图,以估计 1、3 和 5 年的生存率。在风险组之间观察到明显不同的突变谱,KEGG 通路分析显示高风险组富含免疫相关途径。高风险评分与 C6(TGF-β 主导)亚型显著相关,而低风险评分与 C4(淋巴细胞耗竭)亚型相关。较高的风险评分还表明免疫浸润增加,免疫功能增强,肿瘤纯度降低,免疫治疗反应较差。模型基因与抗癌药物敏感性相关。操纵 MATN3 表达表明它促进了 STAD 细胞在体外的增殖和迁移以及体内的肿瘤生长。代谢组学测序显示,MATN3 敲低增加了 30 种氨基酸代谢物的水平,包括α-氨基丁酸、甘氨酸和天冬氨酸,同时降低了(S)-β-氨基异丁酸和精氨酸琥珀酸。MR 分析发现 NRP1 对胃癌有显著的因果影响,但 MATN3 或 SERPINE1 没有因果关系。

结论

综上所述,氨基酸代谢相关的预后模型有望成为预测 STAD 临床预后、选择免疫治疗和药物治疗的有价值的生物标志物。此外,我们的研究还揭示了 MATN3 作为一种有前途的策略,用于对抗 STAD 进展的潜在价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验