Suppr超能文献

基于视网膜图像的深度学习标记物预测发病率和死亡率的应用:一项队列研究和验证研究。

Application of a deep-learning marker for morbidity and mortality prediction derived from retinal photographs: a cohort development and validation study.

机构信息

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.

Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; MediWhale, Seoul, South Korea.

出版信息

Lancet Healthy Longev. 2024 Oct;5(10):100593. doi: 10.1016/S2666-7568(24)00089-8. Epub 2024 Sep 30.

Abstract

BACKGROUND

Biological ageing markers are useful to risk stratify morbidity and mortality more precisely than chronological age. In this study, we aimed to develop a novel deep-learning-based biological ageing marker (referred to as RetiPhenoAge hereafter) using retinal images and PhenoAge, a composite biomarker of phenotypic age.

METHODS

We used retinal photographs from the UK Biobank dataset to train a deep-learning algorithm to predict the composite score of PhenoAge. We used a deep convolutional neural network architecture with multiple layers to develop our deep-learning-based biological ageing marker, as RetiPhenoAge, with the aim of identifying patterns and features in the retina associated with variations of blood biomarkers related to renal, immune, liver functions, inflammation, and energy metabolism, and chronological age. We determined the performance of this biological ageing marker for the prediction of morbidity (cardiovascular disease and cancer events) and mortality (all-cause, cardiovascular disease, and cancer) in three independent cohorts (UK Biobank, the Singapore Epidemiology of Eye Diseases [SEED], and the Age-Related Eye Disease Study [AREDS] from the USA). We also compared the performance of RetiPhenoAge with two other known ageing biomarkers (hand grip strength and adjusted leukocyte telomere length) and one lifestyle factor (physical activity) for risk stratification of mortality and morbidity. We explored the underlying biology of RetiPhenoAge by assessing its associations with different systemic characteristics (eg, diabetes or hypertension) and blood metabolite levels. We also did a genome-wide association study to identify genetic variants associated with RetiPhenoAge, followed by expression quantitative trait loci mapping, a gene-based analysis, and a gene-set analysis. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and corresponding 95% CIs for the associations between RetiPhenoAge and the different morbidity and mortality outcomes.

FINDINGS

Retinal photographs for 34 061 UK Biobank participants were used to train the model, and data for 9429 participants from the SEED cohort and for 3986 participants from the AREDS cohort were included in the study. RetiPhenoAge was associated with all-cause mortality (HR 1·92 [95% CI 1·42-2·61]), cardiovascular disease mortality (1·97 [1·02-3·82]), cancer mortality (2·07 [1·29-3·33]), and cardiovascular disease events (1·70 [1·17-2·47]), independent of PhenoAge and other possible confounders. Similar findings were found in the two independent cohorts (HR 1·67 [1·21-2·31] for cardiovascular disease mortality in SEED and 2·07 [1·10-3·92] in AREDS). RetiPhenoAge had stronger associations with mortality and morbidity than did hand grip strength, telomere length, and physical activity. We identified two genetic variants that were significantly associated with RetiPhenoAge (single nucleotide polymorphisms rs3791224 and rs8001273), and were linked to expression quantitative trait locis in various tissues, including the heart, kidneys, and the brain.

INTERPRETATION

Our new deep-learning-derived biological ageing marker is a robust predictor of mortality and morbidity outcomes and could be used as a novel non-invasive method to measure ageing.

FUNDING

Singapore National Medical Research Council and Agency for Science, Technology and Research, Singapore.

摘要

背景

生物衰老标志物可用于更精确地对发病率和死亡率进行风险分层,其效果优于实际年龄。本研究旨在使用视网膜图像和 PhenoAge(一种表型年龄的综合生物标志物)开发一种新的基于深度学习的生物衰老标志物(简称 RetiPhenoAge)。

方法

我们使用 UK Biobank 数据集的视网膜照片来训练深度学习算法,以预测 PhenoAge 的综合评分。我们使用了一种具有多层的深度卷积神经网络架构来开发我们的基于深度学习的生物衰老标志物 RetiPhenoAge,旨在识别与肾功能、免疫功能、肝功能、炎症和能量代谢以及实际年龄相关的血液生物标志物变化相关的视网膜中的模式和特征。我们在三个独立队列(UK Biobank、新加坡眼病流行病学研究 [SEED] 和美国的年龄相关性眼病研究 [AREDS])中确定了这种生物衰老标志物对发病率(心血管疾病和癌症事件)和死亡率(全因、心血管疾病和癌症)的预测性能。我们还比较了 RetiPhenoAge 与另外两种已知的衰老生物标志物(握力和调整后的白细胞端粒长度)以及一种生活方式因素(体力活动)在死亡率和发病率风险分层方面的性能。我们通过评估 RetiPhenoAge 与不同的系统特征(例如糖尿病或高血压)和血液代谢物水平的相关性,来探索其潜在生物学。我们还进行了全基因组关联研究,以确定与 RetiPhenoAge 相关的遗传变异,随后进行表达数量性状基因座映射、基于基因的分析和基于基因集的分析。Cox 比例风险模型用于估计 RetiPhenoAge 与不同发病率和死亡率结果之间的风险比(HR)和相应的 95%置信区间。

结果

使用 34061 名 UK Biobank 参与者的视网膜照片来训练模型,9429 名 SEED 队列参与者和 3986 名 AREDS 队列参与者的数据被纳入研究。RetiPhenoAge 与全因死亡率(HR 1.92 [95%CI 1.42-2.61])、心血管疾病死亡率(1.97 [1.02-3.82])、癌症死亡率(2.07 [1.29-3.33])和心血管疾病事件(1.70 [1.17-2.47])相关,独立于 PhenoAge 和其他可能的混杂因素。在两个独立的队列中也发现了类似的结果(SEED 队列中心血管疾病死亡率的 HR 为 1.67 [1.21-2.31],AREDS 队列中为 2.07 [1.10-3.92])。RetiPhenoAge 与死亡率和发病率的相关性强于握力、端粒长度和体力活动。我们确定了两个与 RetiPhenoAge 显著相关的遗传变异(单核苷酸多态性 rs3791224 和 rs8001273),并与包括心脏、肾脏和大脑在内的各种组织中的表达数量性状基因座相关。

解释

我们新的基于深度学习的生物衰老标志物是死亡率和发病率结果的可靠预测指标,可作为一种新的非侵入性测量衰老的方法。

资金

新加坡国家医学研究理事会和新加坡科学、技术和研究局。

相似文献

2
A deep-learning retinal aging biomarker for cognitive decline and incident dementia.
Alzheimers Dement. 2025 Mar;21(3):e14601. doi: 10.1002/alz.14601.
4
Prediction of systemic biomarkers from retinal photographs: development and validation of deep-learning algorithms.
Lancet Digit Health. 2020 Oct;2(10):e526-e536. doi: 10.1016/S2589-7500(20)30216-8.
9
Association of retinal image-based, deep learning cardiac BioAge with telomere length and cardiovascular biomarkers.
Optom Vis Sci. 2024 Jul 1;101(7):464-469. doi: 10.1097/OPX.0000000000002158. Epub 2024 Jun 28.

引用本文的文献

2
Large language model-based biological age prediction in large-scale populations.
Nat Med. 2025 Jul 23. doi: 10.1038/s41591-025-03856-8.
5
LinAge2: providing actionable insights and benchmarking with epigenetic clocks.
NPJ Aging. 2025 Apr 23;11(1):29. doi: 10.1038/s41514-025-00221-4.
7
Biomarkers of aging: from molecules and surrogates to physiology and function.
Physiol Rev. 2025 Jul 1;105(3):1609-1694. doi: 10.1152/physrev.00045.2024. Epub 2025 Mar 20.
8
Use of artificial intelligence with retinal imaging in screening for diabetes-associated complications: systematic review.
EClinicalMedicine. 2025 Feb 18;81:103089. doi: 10.1016/j.eclinm.2025.103089. eCollection 2025 Mar.
9
A deep-learning retinal aging biomarker for cognitive decline and incident dementia.
Alzheimers Dement. 2025 Mar;21(3):e14601. doi: 10.1002/alz.14601.
10
The evolution of diabetic retinopathy screening.
Eye (Lond). 2025 Apr;39(6):1040-1046. doi: 10.1038/s41433-025-03633-4. Epub 2025 Feb 5.

本文引用的文献

2
Biological age is superior to chronological age in predicting hospital mortality of the critically ill.
Intern Emerg Med. 2023 Oct;18(7):2019-2028. doi: 10.1007/s11739-023-03397-3. Epub 2023 Aug 28.
3
Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan.
Lancet Healthy Longev. 2023 Sep;4(9):e478-e486. doi: 10.1016/S2666-7568(23)00133-2. Epub 2023 Aug 16.
5
Association of Retinal Age Gap and Risk of Kidney Failure: A UK Biobank Study.
Am J Kidney Dis. 2023 May;81(5):537-544.e1. doi: 10.1053/j.ajkd.2022.09.018. Epub 2022 Dec 5.
6
Downregulation of Crystallin Lambda 1 is a New Independent Prognostic Marker in Clear Cell Renal Cell Carcinoma.
Pharmgenomics Pers Med. 2022 Oct 10;15:857-866. doi: 10.2147/PGPM.S382564. eCollection 2022.
7
Retinal vascular profile in predicting incident cardiometabolic diseases among individuals with diabetes.
Microcirculation. 2022 Jul;29(4-5):e12772. doi: 10.1111/micc.12772. Epub 2022 Jun 26.
10
Proteomic analysis of descending thoracic aorta identifies unique and universal signatures of aneurysm and dissection.
JVS Vasc Sci. 2022 Jan 22;3:85-181. doi: 10.1016/j.jvssci.2022.01.001. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验