Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.
Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; MediWhale, Seoul, South Korea.
Lancet Healthy Longev. 2024 Oct;5(10):100593. doi: 10.1016/S2666-7568(24)00089-8. Epub 2024 Sep 30.
Biological ageing markers are useful to risk stratify morbidity and mortality more precisely than chronological age. In this study, we aimed to develop a novel deep-learning-based biological ageing marker (referred to as RetiPhenoAge hereafter) using retinal images and PhenoAge, a composite biomarker of phenotypic age.
We used retinal photographs from the UK Biobank dataset to train a deep-learning algorithm to predict the composite score of PhenoAge. We used a deep convolutional neural network architecture with multiple layers to develop our deep-learning-based biological ageing marker, as RetiPhenoAge, with the aim of identifying patterns and features in the retina associated with variations of blood biomarkers related to renal, immune, liver functions, inflammation, and energy metabolism, and chronological age. We determined the performance of this biological ageing marker for the prediction of morbidity (cardiovascular disease and cancer events) and mortality (all-cause, cardiovascular disease, and cancer) in three independent cohorts (UK Biobank, the Singapore Epidemiology of Eye Diseases [SEED], and the Age-Related Eye Disease Study [AREDS] from the USA). We also compared the performance of RetiPhenoAge with two other known ageing biomarkers (hand grip strength and adjusted leukocyte telomere length) and one lifestyle factor (physical activity) for risk stratification of mortality and morbidity. We explored the underlying biology of RetiPhenoAge by assessing its associations with different systemic characteristics (eg, diabetes or hypertension) and blood metabolite levels. We also did a genome-wide association study to identify genetic variants associated with RetiPhenoAge, followed by expression quantitative trait loci mapping, a gene-based analysis, and a gene-set analysis. Cox proportional hazards models were used to estimate the hazard ratios (HRs) and corresponding 95% CIs for the associations between RetiPhenoAge and the different morbidity and mortality outcomes.
Retinal photographs for 34 061 UK Biobank participants were used to train the model, and data for 9429 participants from the SEED cohort and for 3986 participants from the AREDS cohort were included in the study. RetiPhenoAge was associated with all-cause mortality (HR 1·92 [95% CI 1·42-2·61]), cardiovascular disease mortality (1·97 [1·02-3·82]), cancer mortality (2·07 [1·29-3·33]), and cardiovascular disease events (1·70 [1·17-2·47]), independent of PhenoAge and other possible confounders. Similar findings were found in the two independent cohorts (HR 1·67 [1·21-2·31] for cardiovascular disease mortality in SEED and 2·07 [1·10-3·92] in AREDS). RetiPhenoAge had stronger associations with mortality and morbidity than did hand grip strength, telomere length, and physical activity. We identified two genetic variants that were significantly associated with RetiPhenoAge (single nucleotide polymorphisms rs3791224 and rs8001273), and were linked to expression quantitative trait locis in various tissues, including the heart, kidneys, and the brain.
Our new deep-learning-derived biological ageing marker is a robust predictor of mortality and morbidity outcomes and could be used as a novel non-invasive method to measure ageing.
Singapore National Medical Research Council and Agency for Science, Technology and Research, Singapore.
生物衰老标志物可用于更精确地对发病率和死亡率进行风险分层,其效果优于实际年龄。本研究旨在使用视网膜图像和 PhenoAge(一种表型年龄的综合生物标志物)开发一种新的基于深度学习的生物衰老标志物(简称 RetiPhenoAge)。
我们使用 UK Biobank 数据集的视网膜照片来训练深度学习算法,以预测 PhenoAge 的综合评分。我们使用了一种具有多层的深度卷积神经网络架构来开发我们的基于深度学习的生物衰老标志物 RetiPhenoAge,旨在识别与肾功能、免疫功能、肝功能、炎症和能量代谢以及实际年龄相关的血液生物标志物变化相关的视网膜中的模式和特征。我们在三个独立队列(UK Biobank、新加坡眼病流行病学研究 [SEED] 和美国的年龄相关性眼病研究 [AREDS])中确定了这种生物衰老标志物对发病率(心血管疾病和癌症事件)和死亡率(全因、心血管疾病和癌症)的预测性能。我们还比较了 RetiPhenoAge 与另外两种已知的衰老生物标志物(握力和调整后的白细胞端粒长度)以及一种生活方式因素(体力活动)在死亡率和发病率风险分层方面的性能。我们通过评估 RetiPhenoAge 与不同的系统特征(例如糖尿病或高血压)和血液代谢物水平的相关性,来探索其潜在生物学。我们还进行了全基因组关联研究,以确定与 RetiPhenoAge 相关的遗传变异,随后进行表达数量性状基因座映射、基于基因的分析和基于基因集的分析。Cox 比例风险模型用于估计 RetiPhenoAge 与不同发病率和死亡率结果之间的风险比(HR)和相应的 95%置信区间。
使用 34061 名 UK Biobank 参与者的视网膜照片来训练模型,9429 名 SEED 队列参与者和 3986 名 AREDS 队列参与者的数据被纳入研究。RetiPhenoAge 与全因死亡率(HR 1.92 [95%CI 1.42-2.61])、心血管疾病死亡率(1.97 [1.02-3.82])、癌症死亡率(2.07 [1.29-3.33])和心血管疾病事件(1.70 [1.17-2.47])相关,独立于 PhenoAge 和其他可能的混杂因素。在两个独立的队列中也发现了类似的结果(SEED 队列中心血管疾病死亡率的 HR 为 1.67 [1.21-2.31],AREDS 队列中为 2.07 [1.10-3.92])。RetiPhenoAge 与死亡率和发病率的相关性强于握力、端粒长度和体力活动。我们确定了两个与 RetiPhenoAge 显著相关的遗传变异(单核苷酸多态性 rs3791224 和 rs8001273),并与包括心脏、肾脏和大脑在内的各种组织中的表达数量性状基因座相关。
我们新的基于深度学习的生物衰老标志物是死亡率和发病率结果的可靠预测指标,可作为一种新的非侵入性测量衰老的方法。
新加坡国家医学研究理事会和新加坡科学、技术和研究局。