Suppr超能文献

AmpClass:一种基于监督机器学习的抗菌肽预测器。

AmpClass: an Antimicrobial Peptide Predictor Based on Supervised Machine Learning.

机构信息

Instituto Tecnológico Metropolitano, Departamento de Sistemas de Información, Facultad de Ingeniería, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia.

Universidad de Antioquia, Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Calle 67 # 53 - 108, 050010, Medellín, Antioquia, Colombia.

出版信息

An Acad Bras Cienc. 2024 Oct 4;96(4):e20230756. doi: 10.1590/0001-3765202420230756. eCollection 2024.

Abstract

In the last decades, antibiotic resistance has been considered a severe problem worldwide. Antimicrobial peptides (AMPs) are molecules that have shown potential for the development of new drugs against antibiotic-resistant bacteria. Nowadays, medicinal drug researchers use supervised learning methods to screen new peptides with antimicrobial potency to save time and resources. In this work, we consolidate a database with 15945 AMPs and 12535 non-AMPs taken as the base to train a pool of supervised learning models to recognize peptides with antimicrobial activity. Results show that the proposed tool (AmpClass) outperforms classical state-of-the-art prediction models and achieves similar results compared with deep learning models.

摘要

在过去的几十年中,抗生素耐药性已被认为是一个严重的全球性问题。抗菌肽 (AMPs) 是一类具有开发针对抗药性细菌新药潜力的分子。如今,药物研究人员使用有监督的学习方法来筛选具有抗菌效力的新肽,以节省时间和资源。在这项工作中,我们整合了一个包含 15945 种 AMPs 和 12535 种非 AMPs 的数据库,作为训练一组有监督学习模型的基础,以识别具有抗菌活性的肽。结果表明,所提出的工具 (AmpClass) 优于经典的最先进的预测模型,并与深度学习模型取得了相似的结果。

相似文献

1
AmpClass: an Antimicrobial Peptide Predictor Based on Supervised Machine Learning.
An Acad Bras Cienc. 2024 Oct 4;96(4):e20230756. doi: 10.1590/0001-3765202420230756. eCollection 2024.
2
Machine Learning Prediction of Antimicrobial Peptides.
Methods Mol Biol. 2022;2405:1-37. doi: 10.1007/978-1-0716-1855-4_1.
4
Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment.
Biochim Biophys Acta Gen Subj. 2022 Mar;1866(3):130070. doi: 10.1016/j.bbagen.2021.130070. Epub 2021 Dec 22.
7
Chemical modifications to increase the therapeutic potential of antimicrobial peptides.
Peptides. 2021 Dec;146:170666. doi: 10.1016/j.peptides.2021.170666. Epub 2021 Sep 29.
8
Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
BMC Bioinformatics. 2021 May 11;22(1):239. doi: 10.1186/s12859-021-04156-x.
9
Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.
Mol Inform. 2024 May;43(5):e202200181. doi: 10.1002/minf.202200181. Epub 2023 Apr 7.
10
Discovery of antimicrobial peptides in the global microbiome with machine learning.
Cell. 2024 Jul 11;187(14):3761-3778.e16. doi: 10.1016/j.cell.2024.05.013. Epub 2024 Jun 5.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验