Instituto Tecnológico Metropolitano, Departamento de Sistemas de Información, Facultad de Ingeniería, Calle 54A # 30-01, 050013, Medellín, Antioquia, Colombia.
Universidad de Antioquia, Departamento de Ingeniería de Sistemas, Facultad de Ingenierías, Calle 67 # 53 - 108, 050010, Medellín, Antioquia, Colombia.
An Acad Bras Cienc. 2024 Oct 4;96(4):e20230756. doi: 10.1590/0001-3765202420230756. eCollection 2024.
In the last decades, antibiotic resistance has been considered a severe problem worldwide. Antimicrobial peptides (AMPs) are molecules that have shown potential for the development of new drugs against antibiotic-resistant bacteria. Nowadays, medicinal drug researchers use supervised learning methods to screen new peptides with antimicrobial potency to save time and resources. In this work, we consolidate a database with 15945 AMPs and 12535 non-AMPs taken as the base to train a pool of supervised learning models to recognize peptides with antimicrobial activity. Results show that the proposed tool (AmpClass) outperforms classical state-of-the-art prediction models and achieves similar results compared with deep learning models.
在过去的几十年中,抗生素耐药性已被认为是一个严重的全球性问题。抗菌肽 (AMPs) 是一类具有开发针对抗药性细菌新药潜力的分子。如今,药物研究人员使用有监督的学习方法来筛选具有抗菌效力的新肽,以节省时间和资源。在这项工作中,我们整合了一个包含 15945 种 AMPs 和 12535 种非 AMPs 的数据库,作为训练一组有监督学习模型的基础,以识别具有抗菌活性的肽。结果表明,所提出的工具 (AmpClass) 优于经典的最先进的预测模型,并与深度学习模型取得了相似的结果。