Suppr超能文献

迷走神经感觉神经元衍生的FGF3控制胰岛素分泌。

Vagal sensory neuron-derived FGF3 controls insulin secretion.

作者信息

Tahiri Azeddine, Youssef Ayman, Inoue Ryota, Moon Sohyun, Alsarkhi Lamyaa, Berroug Laila, Nguyen Xuan Thi Anh, Wang Le, Kwon Hyokjoon, Pang Zhiping P, Zhao Jerry Yingtao, Shirakawa Jun, Ulloa Luis, El Ouaamari Abdelfattah

机构信息

Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA.

Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA.

出版信息

Dev Cell. 2025 Jan 6;60(1):51-61.e4. doi: 10.1016/j.devcel.2024.09.016. Epub 2024 Oct 15.

Abstract

Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.

摘要

迷走神经刺激已成为治疗包括代谢紊乱在内的多种慢性疾病的一种有前景的方式。然而,驱动这些临床益处的细胞和分子途径在很大程度上仍不清楚。在此,我们证明在急性代谢应激下,小鼠迷走神经节中纤维母细胞生长因子3(Fgf3)mRNA上调。Fgf3的全身和迷走神经感觉过表达增强了葡萄糖刺激的胰岛素分泌(GSIS),改善了血糖波动,并增加了能量消耗和身体活动。当Fgf3的过表达局限于投射到胰腺的迷走神经感觉神经元时,可重现Fgf3引发的促胰岛素分泌和降糖反应。胰腺迷走神经传入纤维中Fgf3的基因敲除加剧了高脂饮食诱导的葡萄糖不耐受,并减弱了GSIS。最后,迷走神经传入纤维的电刺激独立于传出输出增强了GSIS和葡萄糖清除。总体而言,我们证明了迷走神经传入信号在GSIS中的直接作用,并确定Fgf3是一种控制胰腺β细胞活性的迷走神经感觉源代谢因子。

相似文献

1
Vagal sensory neuron-derived FGF3 controls insulin secretion.
Dev Cell. 2025 Jan 6;60(1):51-61.e4. doi: 10.1016/j.devcel.2024.09.016. Epub 2024 Oct 15.
2
Deconstructing the origins of sexual dimorphism in sensory modulation of pancreatic β cells.
Mol Metab. 2021 Nov;53:101260. doi: 10.1016/j.molmet.2021.101260. Epub 2021 May 21.
3
Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation.
Nat Biomed Eng. 2024 Jul;8(7):808-822. doi: 10.1038/s41551-023-01113-2. Epub 2023 Nov 9.
4
Pancreatic T cell protein-tyrosine phosphatase deficiency affects beta cell function in mice.
Diabetologia. 2015 Jan;58(1):122-31. doi: 10.1007/s00125-014-3413-7. Epub 2014 Oct 23.
7
Phospholipase C-β1 potentiates glucose-stimulated insulin secretion.
FASEB J. 2019 Oct;33(10):10668-10679. doi: 10.1096/fj.201802732RR. Epub 2019 Jul 3.
8
Pancreatic β-Cells Communicate With Vagal Sensory Neurons.
Gastroenterology. 2021 Feb;160(3):875-888.e11. doi: 10.1053/j.gastro.2020.10.034. Epub 2020 Oct 26.
9
2-Hydroxylation is a chemical switch linking fatty acids to glucose-stimulated insulin secretion.
J Biol Chem. 2024 Dec;300(12):107912. doi: 10.1016/j.jbc.2024.107912. Epub 2024 Oct 21.
10
A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.
Diabetologia. 2016 Dec;59(12):2654-2663. doi: 10.1007/s00125-016-4105-2. Epub 2016 Sep 27.

引用本文的文献

1
Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond.
Compr Physiol. 2025 Apr;15(2):e70010. doi: 10.1002/cph4.70010.
2
Vagal stimulation ameliorates murine colitis by regulating SUMOylation.
Sci Transl Med. 2024 Nov 20;16(774):eadl2184. doi: 10.1126/scitranslmed.adl2184.

本文引用的文献

1
Separate gut-brain circuits for fat and sugar reinforcement combine to promote overeating.
Cell Metab. 2024 Feb 6;36(2):393-407.e7. doi: 10.1016/j.cmet.2023.12.014. Epub 2024 Jan 18.
2
Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation.
Nat Biomed Eng. 2024 Jul;8(7):808-822. doi: 10.1038/s41551-023-01113-2. Epub 2023 Nov 9.
4
Bioelectronic neuro-immunology: Neuronal networks for sympathetic-splenic and vagal-adrenal control.
Neuron. 2023 Jan 4;111(1):10-14. doi: 10.1016/j.neuron.2022.09.015. Epub 2022 Oct 5.
5
Convergent biological pathways underlying the Kallmann syndrome-linked genes Hs6st1 and Fgfr1.
Hum Mol Genet. 2022 Dec 16;31(24):4207-4216. doi: 10.1093/hmg/ddac172.
6
Mapping and targeted viral activation of pancreatic nerves in mice reveal their roles in the regulation of glucose metabolism.
Nat Biomed Eng. 2022 Nov;6(11):1298-1316. doi: 10.1038/s41551-022-00909-y. Epub 2022 Jul 14.
7
Regulation of Carcinogenesis by Sensory Neurons and Neuromediators.
Cancers (Basel). 2022 May 9;14(9):2333. doi: 10.3390/cancers14092333.
8
Unravelling innervation of pancreatic islets.
Diabetologia. 2022 Jul;65(7):1069-1084. doi: 10.1007/s00125-022-05691-9. Epub 2022 Mar 29.
9
Fibroblast Growth Factor-1 Activates Neurons in the Arcuate Nucleus and Dorsal Vagal Complex.
Front Endocrinol (Lausanne). 2021 Dec 20;12:772909. doi: 10.3389/fendo.2021.772909. eCollection 2021.
10
Interactions between insulin and exercise.
Biochem J. 2021 Nov 12;478(21):3827-3846. doi: 10.1042/BCJ20210185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验