College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China.
Anal Chem. 2024 Nov 5;96(44):17602-17611. doi: 10.1021/acs.analchem.4c03463. Epub 2024 Oct 24.
Protein-nanoparticle interactions play a crucial role in both biomedical applications and the biosafety assessment of nanomaterials. Here, we found that nanobodies can induce citrate-capped gold nanoparticles (AuNPs) to aggregate into large clusters. Subsequently, we explored the mechanism behind this aggregation and proposed the "gold nucleation mechanism" to explain this phenomenon. Building on this observation, we developed a one-step label-free colorimetric method based on nanobody-induced AuNP aggregation. When nanobodies bind to target bacteria, spatial hindrance occurs, preventing further AuNPs aggregation. This alteration in surface plasmon resonance properties results in visible color changes. As an example, we present a simple and sensitive "mix-and-read" chromogenic immunosensor for (). The experiment can be completed within 20 min, with a visual detection limit of 10 CFU/mL and a quantitative detection limit of 136 CFU/mL. Importantly, our method exhibits no cross-reactivity with other bacterial species. This strategy harnesses the excellent properties of nanobodies and the optical characteristics of AuNPs for direct and rapid detection of foodborne pathogen.
蛋白质-纳米颗粒相互作用在生物医学应用和纳米材料的生物安全评估中都起着至关重要的作用。在这里,我们发现纳米抗体可以诱导柠檬酸包被的金纳米颗粒(AuNPs)聚集形成大的簇。随后,我们探索了这种聚集背后的机制,并提出了“金成核机制”来解释这一现象。在此观察的基础上,我们开发了一种基于纳米抗体诱导的 AuNP 聚集的一步法无标记比色法。当纳米抗体与靶细菌结合时,会发生空间阻碍,从而阻止进一步的 AuNPs 聚集。这种表面等离子体共振特性的改变导致可见颜色变化。例如,我们提出了一种简单而灵敏的用于 ()的“混合读取”比色免疫传感器。实验可在 20 分钟内完成,具有 10 CFU/mL 的目视检测限和 136 CFU/mL 的定量检测限。重要的是,我们的方法与其他细菌物种没有交叉反应。该策略利用了纳米抗体的优异性质和 AuNPs 的光学特性,用于直接和快速检测食源性病原体。