Suppr超能文献

SHAP 分析实用指南:在药物研发中解释有监督机器学习模型预测。

Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development.

机构信息

AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany.

出版信息

Clin Transl Sci. 2024 Nov;17(11):e70056. doi: 10.1111/cts.70056.

Abstract

Despite increasing interest in using Artificial Intelligence (AI) and Machine Learning (ML) models for drug development, effectively interpreting their predictions remains a challenge, which limits their impact on clinical decisions. We address this issue by providing a practical guide to SHapley Additive exPlanations (SHAP), a popular feature-based interpretability method, which can be seamlessly integrated into supervised ML models to gain a deeper understanding of their predictions, thereby enhancing their transparency and trustworthiness. This tutorial focuses on the application of SHAP analysis to standard ML black-box models for regression and classification problems. We provide an overview of various visualization plots and their interpretation, available software for implementing SHAP, and highlight best practices, as well as special considerations, when dealing with binary endpoints and time-series models. To enhance the reader's understanding for the method, we also apply it to inherently explainable regression models. Finally, we discuss the limitations and ongoing advancements aimed at tackling the current drawbacks of the method.

摘要

尽管人们对使用人工智能 (AI) 和机器学习 (ML) 模型进行药物开发越来越感兴趣,但有效解释其预测结果仍然是一个挑战,这限制了它们对临床决策的影响。我们通过提供 SHapley Additive exPlanations (SHAP) 的实用指南来解决这个问题,SHAP 是一种流行的基于特征的可解释性方法,可以无缝集成到监督 ML 模型中,以更深入地了解其预测结果,从而提高其透明度和可信度。本教程重点介绍了 SHAP 分析在回归和分类问题的标准 ML 黑盒模型中的应用。我们提供了各种可视化图及其解释、用于实现 SHAP 的可用软件的概述,并强调了处理二进制端点和时间序列模型时的最佳实践和特殊考虑。为了增强读者对该方法的理解,我们还将其应用于具有内在可解释性的回归模型。最后,我们讨论了该方法的局限性和正在进行的改进,旨在解决该方法目前的缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc9/11513550/6448fdd08cf9/CTS-17-e70056-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验