School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
Nat Commun. 2024 Oct 30;15(1):9367. doi: 10.1038/s41467-024-53721-4.
Cryo-electron microscopy (cryo-EM) is one of the most powerful experimental methods for macromolecular structure determination. However, accurate DNA/RNA structure modeling from cryo-EM maps is still challenging especially for protein-DNA/RNA or multi-chain DNA/RNA complexes. Here we propose a deep learning-based method for accurate de novo structure determination of DNA/RNA from cryo-EM maps at <5 Å resolutions, which is referred to as EM2NA. EM2NA is extensively evaluated on a diverse test set of 50 experimental maps at 2.0-5.0 Å resolutions, and compared with state-of-the-art methods including CryoREAD, ModelAngelo, and phenix.map_to_model. On average, EM2NA achieves a residue coverage of 83.15%, C4' RMSD of 1.06 Å, and sequence recall of 46.86%, which outperforms the existing methods. Moreover, EM2NA is applied to build the DNA/RNA structures with 10 to 5347 nt from an EMDB-wide data set of 263 unmodeled raw maps, demonstrating its ability in the blind model building of DNA/RNA from cryo-EM maps. EM2NA is fast and can normally build a DNA/RNA structure of <500 nt within 10 minutes.
冷冻电镜(cryo-EM)是用于确定生物大分子结构的最强大的实验方法之一。然而,准确地从冷冻电镜图中建模 DNA/RNA 结构仍然具有挑战性,特别是对于蛋白质-DNA/RNA 或多链 DNA/RNA 复合物。在这里,我们提出了一种基于深度学习的方法,用于在 <5 Å 分辨率下从冷冻电镜图中准确从头确定 DNA/RNA 的结构,称为 EM2NA。我们在 50 个实验图谱的多样化测试集中,在 2.0-5.0 Å 的分辨率下对 EM2NA 进行了广泛评估,并与包括 CryoREAD、ModelAngelo 和 phenix.map_to_model 在内的最先进方法进行了比较。平均而言,EM2NA 实现了 83.15%的残基覆盖率、1.06 Å 的 C4' RMSD 和 46.86%的序列召回率,优于现有方法。此外,EM2NA 还应用于从 263 个未建模原始图谱的 EMDB 广泛数据集构建具有 10 至 5347 个核苷酸的 DNA/RNA 结构,证明了其从冷冻电镜图中对 DNA/RNA 进行盲建模的能力。EM2NA 速度很快,通常可以在 10 分钟内构建一个 <500 个核苷酸的 DNA/RNA 结构。