Matboli Marwa, Al-Amodi Hiba S, Khaled Abdelrahman, Khaled Radwa, Ali Marwa, Kamel Hala F M, Hamid Manal S Abd El, ELsawi Hind A, Habib Eman K, Youssef Ibrahim
Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt.
Front Mol Biosci. 2024 Oct 16;11:1430794. doi: 10.3389/fmolb.2024.1430794. eCollection 2024.
Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management.
In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC).
Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
肝癌,尤其是肝细胞癌(HCC),因其高发病率和异质性,仍然是一个重大的全球健康问题。尽管存在已获批用于HCC治疗的药物,但预测性生物标志物的匮乏限制了它们的有效利用。整合多种数据类型以彻底改变药物反应预测,最终实现个性化的HCC管理。
在本研究中,我们开发了多个监督式机器学习模型来预测治疗反应。这些模型使用逻辑回归(LR)、k近邻(kNN)、神经网络(NN)、支持向量机(SVM)和随机森林(RF)等分类器,将一组全面的分子、生化和免疫组化特征作为三种药物(泮托拉唑、矢车菊素3-糖苷(矢车菊素)和橙皮苷)的靶点。报告了完整模型和简化模型的一组性能指标,包括准确率、精确率、召回率(敏感性)、特异性和马修斯相关系数(MCC)。
值得注意的是,(NN)实现了最佳预测准确率,其中使用分子和生化特征的组合模型表现出卓越的预测能力,在三次交叉验证迭代中,准确率达到了0.9693±0.0105,ROC曲线下的平均面积(AUC)为0.94±0.06。此外,还发现了七个分子特征、七个生化特征和一个免疫组化特征作为有前景的治疗反应生物标志物。这种综合方法有潜力通过更精确地估计药物反应并协助确定有效的治疗策略,显著推进个性化HCC治疗。