Skakuj Kacper, Iglhaut Maximilian, Shao Qian, Garcia Francisco J, Huang Bo-Yang, Brittain Scott M, Nesvizhskii Alexey I, Schirle Markus, Nomura Daniel K, Toste F Dean
Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA.
Novartis Biomedical Research, Cambridge, MA-02139, USA.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202415976. doi: 10.1002/anie.202415976. Epub 2024 Nov 22.
Controlled modifications of amino acids are an indispensable tool for advancing fundamental and translational research based on peptides and proteins. Yet, we still lack methods to chemically modify each naturally occurring amino acid sidechain. To help address this gap, we show that N,α-diaryl oxaziridines expand the scope of bioconjugation methods to chemically modify cysteine, methionine, and tryptophan residues with evidence for additional tyrosine labelling in a proteomic context. Conjugation primarily at tryptophan sites can be accessed by selective cleavage of modifications at other sidechains. The N,α-diaryl oxaziridine reagents are accessed through photoisomerization of nitrones, which serve as photocaged reagents, thus providing an additional level of control over reactivity. Initial guiding principles for the design of nitrone reagents are developed by exploring the impact of structure on UV/Vis absorption, photoisomerization, and reactivity. We identify a nitrone structure that maximizes photoisomerization efficiency, the aqueous stability of the oxaziridine, the extent of amino acid modification, and the stability of the resulting amino acid conjugates. We then translate nitrone reagents to modify proteins in aqueous conditions. Finally, we use nitrones to profile reactive residues across the proteome of a mammalian cell line and find that they expand the proteome coverage.
氨基酸的可控修饰是推进基于肽和蛋白质的基础研究与转化研究不可或缺的工具。然而,我们仍然缺乏对每个天然存在的氨基酸侧链进行化学修饰的方法。为了填补这一空白,我们表明N,α-二芳基恶唑烷扩大了生物共轭方法的范围,能够对蛋白质组背景下的半胱氨酸、甲硫氨酸和色氨酸残基进行化学修饰,并有证据表明还能对酪氨酸进行额外标记。通过选择性切割其他侧链上的修饰,可以实现主要在色氨酸位点的共轭。N,α-二芳基恶唑烷试剂是通过硝酮的光异构化获得的,硝酮用作光笼试剂,从而提供了对反应性的额外控制水平。通过探索结构对紫外/可见吸收、光异构化和反应性的影响,制定了硝酮试剂设计的初步指导原则。我们确定了一种硝酮结构,它能使光异构化效率、恶唑烷的水稳定性、氨基酸修饰程度以及所得氨基酸共轭物的稳定性最大化。然后,我们将硝酮试剂转化用于在水性条件下修饰蛋白质。最后,我们使用硝酮对哺乳动物细胞系的蛋白质组中的反应性残基进行分析,发现它们扩大了蛋白质组覆盖范围。