Suppr超能文献

pVACview:一种用于高效新抗原优先级排序和选择的交互式可视化工具。

pVACview: an interactive visualization tool for efficient neoantigen prioritization and selection.

机构信息

Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.

McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Genome Med. 2024 Nov 14;16(1):132. doi: 10.1186/s13073-024-01384-7.

Abstract

BACKGROUND

Neoantigen-targeting therapies including personalized vaccines have shown promise in the treatment of cancers, particularly when used in combination with checkpoint blockade therapy. At least 100 clinical trials involving these therapies have been initiated globally. Accurate identification and prioritization of neoantigens is crucial for designing these trials, predicting treatment response, and understanding mechanisms of resistance. With the advent of massively parallel DNA and RNA sequencing technologies, it is now possible to computationally predict neoantigens based on patient-specific variant information. However, numerous factors must be considered when prioritizing neoantigens for use in personalized therapies. Complexities such as alternative transcript annotations, various binding, presentation and immunogenicity prediction algorithms, and variable peptide lengths/registers all potentially impact the neoantigen selection process. There has been a rapid development of computational tools that attempt to account for these complexities. While these tools generate numerous algorithmic predictions for neoantigen characterization, results from these pipelines are difficult to navigate and require extensive knowledge of the underlying tools for accurate interpretation. This often leads to over-simplification of pipeline outputs to make them tractable, for example, limiting prediction to a single RNA isoform or only summarizing the top ranked of many possible peptide candidates. In addition to variant detection, gene expression, and predicted peptide binding affinities, recent studies have also demonstrated the importance of mutation location, allele-specific anchor locations, and variation of T-cell response to long versus short peptides. Due to the intricate nature and number of salient neoantigen features, presenting all relevant information to facilitate candidate selection for downstream applications is a difficult challenge that current tools fail to address.

RESULTS

We have created pVACview, the first interactive tool designed to aid in the prioritization and selection of neoantigen candidates for personalized neoantigen therapies including cancer vaccines. pVACview has a user-friendly and intuitive interface where users can upload, explore, select, and export their neoantigen candidates. The tool allows users to visualize candidates at multiple levels of detail including variant, transcript, peptide, and algorithm prediction information.

CONCLUSIONS

pVACview will allow researchers to analyze and prioritize neoantigen candidates with greater efficiency and accuracy in basic and translational settings. The application is available as part of the pVACtools software at pvactools.org and as an online server at pvacview.org.

摘要

背景

包括个性化疫苗在内的针对新抗原的治疗方法在癌症治疗中显示出了前景,尤其是与检查点阻断疗法联合使用时。目前,全球已启动了至少 100 项涉及这些疗法的临床试验。准确识别和优先考虑新抗原对于设计这些试验、预测治疗反应和了解耐药机制至关重要。随着大规模平行 DNA 和 RNA 测序技术的出现,现在可以根据患者特定的变异信息通过计算预测新抗原。然而,在将新抗原优先用于个性化治疗时,必须考虑许多因素。例如,替代转录本注释、各种结合、呈递和免疫原性预测算法以及可变肽长度/注册等复杂性都可能影响新抗原选择过程。目前已经开发出了许多计算工具来尝试解决这些复杂性。虽然这些工具为新抗原特征描述生成了大量算法预测,但这些管道的结果难以理解,并且需要对底层工具有广泛的了解才能进行准确解释。这通常会导致对管道输出进行过度简化,以使其易于处理,例如,将预测限制为单个 RNA 同工型,或者仅对许多可能的肽候选物中排名最高的进行总结。除了变异检测、基因表达和预测肽结合亲和力外,最近的研究还表明突变位置、等位基因特异性锚定位点以及 T 细胞对长肽和短肽的反应差异的重要性。由于新抗原特征的复杂性质和数量众多,呈现所有相关信息以促进候选物的选择,从而为下游应用提供便利,是当前工具无法解决的难题。

结果

我们创建了 pVACview,这是第一个旨在帮助个性化新抗原治疗(包括癌症疫苗)中优先选择新抗原候选物的交互式工具。pVACview 具有用户友好且直观的界面,用户可以在其中上传、探索、选择和导出新抗原候选物。该工具允许用户以多种详细程度可视化候选物,包括变体、转录本、肽和算法预测信息。

结论

pVACview 将使研究人员能够在基础和转化环境中以更高的效率和准确性分析和优先考虑新抗原候选物。该应用程序作为 pVACtools 软件的一部分在 pvactools.org 上可用,并作为在线服务器在 pvacview.org 上可用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验