Suppr超能文献

用于牙周炎风险筛查的可解释深度学习方法

Explainable Deep Learning Approaches for Risk Screening of Periodontitis.

作者信息

Suh B, Yu H, Cha J-K, Choi J, Kim J-W

机构信息

School of Mechanical Engineering, Yonsei University, Seoul, South Korea.

Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Republic of Korea.

出版信息

J Dent Res. 2025 Jan;104(1):45-53. doi: 10.1177/00220345241286488. Epub 2024 Nov 19.

Abstract

Several pieces of evidence have been reported regarding the association between periodontitis and systemic diseases. Despite the emphasized significance of prevention and early diagnosis of periodontitis, there is still a lack of a clinical tool for early screening of this condition. Therefore, this study aims to use explainable artificial intelligence (XAI) technology to facilitate early screening of periodontitis. This is achieved by analyzing various clinical features and providing individualized risk assessment using XAI. We used 1,012 variables for a total of 30,465 participants data from National Health and Nutrition Examination Survey (NHANES). After preprocessing, 9,632 and 5,601 participants were left for all age groups and the over 50 y age group, respectively. They were used to train deep learning and machine learning models optimized for opportunistic screening and diagnosis analysis of periodontitis based on Centers for Disease Control and Prevention/ American Academy of Pediatrics case definition. Local interpretable model-agnostic explanations (LIME) were applied to evaluate potential associated factors, including demographic, lifestyle, medical, and biochemical factors. The deep learning models showed area under the curve values of 0.858 ± 0.011 for the opportunistic screening and 0.865 ± 0.008 for the diagnostic dataset, outperforming baselines. By using LIME, we elicited important features and assessed the combined impact and interpretation of each feature on individual risk. Associated factors such as age, sex, diabetes status, tissue transglutaminase, and smoking status have emerged as crucial features that are about twice as important than other features, while arthritis, sleep disorders, high blood pressure, cholesterol levels, and overweight have also been identified as contributing factors to periodontitis. The feature contribution rankings generated with XAI offered insights that align well with clinically recognized associated factors for periodontitis. These results highlight the utility of XAI in deep learning-based associated factor analysis for detecting clinically associated factors and the assistance of XAI in developing early detection and prevention strategies for periodontitis in medical checkups.

摘要

已有多项证据报道了牙周炎与全身性疾病之间的关联。尽管牙周炎的预防和早期诊断具有重要意义,但仍缺乏用于早期筛查该疾病的临床工具。因此,本研究旨在使用可解释人工智能(XAI)技术来促进牙周炎的早期筛查。这是通过分析各种临床特征并使用XAI提供个性化风险评估来实现的。我们使用了来自美国国家健康与营养检查调查(NHANES)的总共30465名参与者数据中的1012个变量。经过预处理后,所有年龄组分别剩下9632名参与者,50岁以上年龄组剩下5601名参与者。它们被用于训练针对基于疾病控制与预防中心/美国儿科学会病例定义的牙周炎机会性筛查和诊断分析进行优化的深度学习和机器学习模型。应用局部可解释模型无关解释(LIME)来评估潜在的相关因素,包括人口统计学、生活方式、医学和生化因素。深度学习模型在机会性筛查数据集上的曲线下面积值为0.858±0.011,在诊断数据集上为0.865±0.008,优于基线。通过使用LIME,我们得出了重要特征,并评估了每个特征对个体风险的综合影响和解释。年龄、性别、糖尿病状态、组织转谷氨酰胺酶和吸烟状况等相关因素已成为关键特征,其重要性约为其他特征的两倍,而关节炎、睡眠障碍、高血压、胆固醇水平和超重也被确定为牙周炎的促成因素。通过XAI生成的特征贡献排名提供了与临床上公认的牙周炎相关因素高度一致的见解。这些结果突出了XAI在基于深度学习的相关因素分析中用于检测临床相关因素的效用,以及XAI在医疗检查中制定牙周炎早期检测和预防策略方面的辅助作用。

相似文献

1
Explainable Deep Learning Approaches for Risk Screening of Periodontitis.
J Dent Res. 2025 Jan;104(1):45-53. doi: 10.1177/00220345241286488. Epub 2024 Nov 19.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
Nutritional interventions for survivors of childhood cancer.
Cochrane Database Syst Rev. 2016 Aug 22;2016(8):CD009678. doi: 10.1002/14651858.CD009678.pub2.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
10
Interventions to reduce harm from continued tobacco use.
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

引用本文的文献

本文引用的文献

2
Periodontitis and risk of immune-mediated systemic conditions: A systematic review and meta-analysis.
Community Dent Oral Epidemiol. 2023 Oct;51(5):705-717. doi: 10.1111/cdoe.12812. Epub 2022 Nov 15.
3
Host and bacterial factors linking periodontitis and rheumatoid arthritis.
Front Immunol. 2022 Aug 25;13:980805. doi: 10.3389/fimmu.2022.980805. eCollection 2022.
4
Global, regional, and national burden of periodontitis from 1990 to 2019: Results from the Global Burden of Disease study 2019.
J Periodontol. 2022 Oct;93(10):1445-1454. doi: 10.1002/JPER.21-0469. Epub 2022 May 2.
5
Oxidative Stress Markers among Obstructive Sleep Apnea Patients.
Oxid Med Cell Longev. 2021 Jul 19;2021:9681595. doi: 10.1155/2021/9681595. eCollection 2021.
7
8
The circadian clock gene : Role in COVID-19 and periodontitis.
Chronobiol Int. 2021 Jun;38(6):779-784. doi: 10.1080/07420528.2021.1895198. Epub 2021 Apr 1.
9
Role of Dentistry in Global Health: Challenges and Research Priorities.
J Dent Res. 2021 Jul;100(7):681-685. doi: 10.1177/0022034521992011. Epub 2021 Feb 4.
10
Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.
Nat Rev Immunol. 2021 Jul;21(7):426-440. doi: 10.1038/s41577-020-00488-6. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验