Suppr超能文献

预测自杀行为结局:关键因素与机器学习模型分析。

Predicting suicidal behavior outcomes: an analysis of key factors and machine learning models.

机构信息

Medical Doctor, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.

Department of Biostatistics, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran.

出版信息

BMC Psychiatry. 2024 Nov 21;24(1):841. doi: 10.1186/s12888-024-06273-2.

Abstract

BACKGROUND

Suicidal behaviors, which may lead to death (suicide) or survival (suicide attempt), are influenced by various factors. Identifying the specific risk factors for suicidal behavior mortality is critical for improving prevention strategies and clinical interventions. Predicting the outcomes of suicidal behaviors can help identify individuals at higher risk of death, enabling timely and targeted interventions. This study aimed to determine the critical risk factors associated with suicidal behavior mortality and identify an effective classification model for predicting suicidal behavior outcomes.

MATERIALS AND METHODS

This study utilized data recorded in the suicidal behavior registry system of hospitals in Ilam Province. In the first phase, duplicate records were removed, and the data was numerically encoded via Python version 3.11; then, the data was analyzed using chi-square and Fisher's exact tests in SPSS version 22 software to identify the factors influencing suicidal behavior mortality. In the second phase, missing data were removed, and the dataset was standardized. Five binary classification algorithms were utilized, including Random Forest, Logistic Regression, and Decision Trees, with hyperparameters optimized using the area under the receiver operating characteristic curve (AUC) and F1 score metrics. These models were compared based on accuracy, recall, precision, F1 score, and AUC.

RESULTS

Among 3833 cases of suicidal behavior in various hospitals in Ilam Province, the results indicated that the method of suicidal behavior (P < 0.001), reason for suicidal behavior (P < 0.001), age group (P < 0.001), education level (P < 0.001), marital status (P = 0.004), and employment status (P = 0.042) were significantly associated with suicide. Variables such as the season of suicidal behavior, gender, father's education, and mother's education were not significantly related to suicidal behavior mortality. Furthermore, the random forest model demonstrated the highest area under the ROC curve (0.79) and the highest classification accuracy and F1 score on both the training data (0.85 and 0.2, respectively) and test data (0.86 and 0.31, respectively) for predicting suicidal behaviors outcomes among the models tested.

CONCLUSION

This study identified key factors such as older age, lower education, divorce or widowhood, employment, physical methods, and socioeconomic issues as significant predictors of suicidal behavior outcomes. A combination of statistical models for feature selection and machine learning algorithms for prediction was used, with Random Forest showing the best performance. This approach highlights the potential of integrating statistical methods with machine learning to improve suicide risk prediction and intervention strategies.

摘要

背景

自杀行为可能导致死亡(自杀)或存活(自杀未遂),受到多种因素的影响。确定自杀行为死亡率的具体风险因素对于改进预防策略和临床干预至关重要。预测自杀行为的结果有助于识别死亡风险较高的个体,从而及时采取有针对性的干预措施。本研究旨在确定与自杀行为死亡率相关的关键风险因素,并确定一种有效的分类模型来预测自杀行为的结果。

材料与方法

本研究利用了伊拉姆省医院自杀行为登记系统中记录的数据。在第一阶段,通过 Python 版本 3.11 删除了重复记录,并对数据进行了数字编码;然后,使用 SPSS 版本 22 软件中的卡方检验和 Fisher 精确检验分析数据,以确定影响自杀行为死亡率的因素。在第二阶段,删除了缺失数据,并对数据集进行了标准化。使用了五种二分类算法,包括随机森林、逻辑回归和决策树,使用接收器操作特征曲线(AUC)和 F1 评分指标优化了超参数。基于准确性、召回率、精度、F1 评分和 AUC,对这些模型进行了比较。

结果

在伊拉姆省各医院的 3833 例自杀行为病例中,结果表明自杀行为方式(P<0.001)、自杀原因(P<0.001)、年龄组(P<0.001)、教育水平(P<0.001)、婚姻状况(P=0.004)和就业状况(P=0.042)与自杀显著相关。自杀行为的季节、性别、父亲的教育程度和母亲的教育程度等变量与自杀行为死亡率无显著关系。此外,随机森林模型在测试的模型中,ROC 曲线下面积(AUC)最高(0.79),在训练数据(0.85 和 0.2)和测试数据(0.86 和 0.31)上的分类准确率和 F1 评分也最高,用于预测自杀行为结果。

结论

本研究确定了一些关键因素,如年龄较大、教育程度较低、离婚或丧偶、就业、身体方法和社会经济问题,这些因素是自杀行为结果的重要预测指标。本研究采用了统计模型进行特征选择和机器学习算法进行预测的组合,随机森林表现出最佳性能。这种方法突出了将统计方法与机器学习相结合以提高自杀风险预测和干预策略的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4887/11583731/06fa974a2acb/12888_2024_6273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验