Suppr超能文献

一种动力学筛选方法加速靶向蛋白质降解剂的开发。

A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development.

作者信息

Fan Angela T, Gadbois Gillian E, Huang Hai-Tsang, Chaudhry Charu, Jiang Jiewei, Sigua Logan H, Smith Emily R, Wu Sitong, Poirier Grace J, Dunne-Dombrink Kara, Goyal Pavitra, Tao Andrew J, Sellers William R, Fischer Eric S, Donovan Katherine A, Ferguson Fleur M

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego.

The Broad Institute of Harvard and MIT.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202417272. doi: 10.1002/anie.202417272. Epub 2024 Dec 16.

Abstract

Bifunctional molecules such as targeted protein degraders induce proximity to promote gain-of-function pharmacology. These powerful approaches have gained broad traction across academia and the pharmaceutical industry, leading to an intensive focus on strategies that can accelerate their identification and optimization. We and others have previously used chemical proteomics to map degradable target space, and these datasets have been used to develop and train multiparameter models to extend degradability predictions across the proteome. In this study, we now turn our attention to develop generalizable chemistry strategies to accelerate the development of new bifunctional degraders. We implement lysine-targeted reversible-covalent chemistry to rationally tune the binding kinetics at the protein-of-interest across a set of 25 targets. We define an unbiased workflow consisting of global proteomics analysis, IP/MS of ternary complexes and the E-STUB assay, to mechanistically characterize the effects of ligand residence time on targeted protein degradation and formulate hypotheses about the rate-limiting step of degradation for each target. Our key finding is that target residence time is a major determinant of degrader activity, and this can be rapidly and rationally tuned through the synthesis of a minimal number of analogues to accelerate early degrader discovery and optimization.

摘要

双功能分子,如靶向蛋白降解剂,可诱导分子接近以促进功能获得药理学。这些强大的方法在学术界和制药行业得到了广泛应用,促使人们密集关注能够加速其识别和优化的策略。我们和其他人之前使用化学蛋白质组学来绘制可降解靶点空间,这些数据集已被用于开发和训练多参数模型,以扩展对整个蛋白质组的降解性预测。在本研究中,我们现在将注意力转向开发可推广的化学策略,以加速新型双功能降解剂的开发。我们实施赖氨酸靶向的可逆共价化学,以合理调节一组25个靶点上目标蛋白的结合动力学。我们定义了一个无偏工作流程,包括全局蛋白质组学分析、三元复合物的免疫沉淀/质谱分析和E-STUB分析,以从机制上表征配体驻留时间对靶向蛋白降解的影响,并针对每个靶点的降解限速步骤提出假设。我们的关键发现是,靶点驻留时间是降解剂活性的主要决定因素,并且可以通过合成最少数量的类似物来快速合理地调节,以加速早期降解剂的发现和优化。

相似文献

1
A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202417272. doi: 10.1002/anie.202417272. Epub 2024 Dec 16.
2
A Kinetic Scout Approach Accelerates Targeted Protein Degrader Development.
bioRxiv. 2024 Sep 21:2024.09.17.612508. doi: 10.1101/2024.09.17.612508.
4
Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development.
Cell. 2020 Dec 10;183(6):1714-1731.e10. doi: 10.1016/j.cell.2020.10.038. Epub 2020 Dec 3.
5
Targeted protein degradation: Emerging concepts and protein state-specific targeting principles.
Curr Opin Chem Biol. 2022 Apr;67:102114. doi: 10.1016/j.cbpa.2021.102114. Epub 2022 Jan 15.
6
Leveraging Covalency to Stabilize Ternary Complex Formation For Cell-Cell "Induced Proximity".
ACS Chem Biol. 2024 Oct 18;19(10):2103-2117. doi: 10.1021/acschembio.4c00286. Epub 2024 Sep 26.
7
Structure-Guided Design and Optimization of Covalent VHL-Targeted Sulfonyl Fluoride PROTACs.
J Med Chem. 2024 Mar 28;67(6):4641-4654. doi: 10.1021/acs.jmedchem.3c02123. Epub 2024 Mar 13.
8
E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones.
SLAS Discov. 2021 Apr;26(4):484-502. doi: 10.1177/2472555220965528. Epub 2020 Nov 3.
9
Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB.
Cell Chem Biol. 2023 Apr 20;30(4):394-402.e9. doi: 10.1016/j.chembiol.2023.02.008. Epub 2023 Mar 9.
10
Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications.
ACS Chem Biol. 2019 Nov 15;14(11):2430-2440. doi: 10.1021/acschembio.8b01083. Epub 2019 May 13.

引用本文的文献

1
Methods to accelerate PROTAC drug discovery.
Biochem J. 2025 Jun 25;482(13):BCJ20243018. doi: 10.1042/BCJ20243018.
2
Computational Design of Lysine Targeting Covalent Binders Using Rosetta.
J Chem Inf Model. 2025 May 29. doi: 10.1021/acs.jcim.5c00212.

本文引用的文献

1
Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting.
Mol Cell. 2024 Apr 4;84(7):1304-1320.e16. doi: 10.1016/j.molcel.2024.01.022. Epub 2024 Feb 20.
2
Chemical rewiring of ubiquitination by degraders and their selectivity routes.
Nat Struct Mol Biol. 2024 Feb;31(2):205-207. doi: 10.1038/s41594-024-01215-8.
3
Discovery of Novel Potent and Fast BTK PROTACs for the Treatment of Osteoclasts-Related Inflammatory Diseases.
J Med Chem. 2024 Feb 22;67(4):2438-2465. doi: 10.1021/acs.jmedchem.3c01414. Epub 2024 Feb 6.
4
The cyclimids: Degron-inspired cereblon binders for targeted protein degradation.
Cell Chem Biol. 2024 Jun 20;31(6):1162-1175.e10. doi: 10.1016/j.chembiol.2024.01.003. Epub 2024 Feb 5.
5
Activity-based profiling of cullin-RING E3 networks by conformation-specific probes.
Nat Chem Biol. 2023 Dec;19(12):1513-1523. doi: 10.1038/s41589-023-01392-5. Epub 2023 Aug 31.
6
Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation.
Nat Commun. 2023 Jul 13;14(1):4177. doi: 10.1038/s41467-023-39904-5.
7
Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency.
J Med Chem. 2023 May 11;66(9):6239-6250. doi: 10.1021/acs.jmedchem.2c02076. Epub 2023 Apr 26.
8
Modeling the Effect of Cooperativity in Ternary Complex Formation and Targeted Protein Degradation Mediated by Heterobifunctional Degraders.
ACS Bio Med Chem Au. 2022 Nov 15;3(1):74-86. doi: 10.1021/acsbiomedchemau.2c00037. eCollection 2023 Feb 15.
9
Delivering on the promise of protein degraders.
Nat Rev Drug Discov. 2023 May;22(5):410-427. doi: 10.1038/s41573-023-00652-2. Epub 2023 Feb 21.
10
Discovery of a potent BTK and IKZF1/3 triple degrader through reversible covalent BTK PROTAC development.
Curr Res Chem Biol. 2022;2. doi: 10.1016/j.crchbi.2022.100029. Epub 2022 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验