Suppr超能文献

从小鼠模型到人类衰老与疾病的端粒功能及调控

Telomere function and regulation from mouse models to human ageing and disease.

作者信息

Jones-Weinert Corey, Mainz Laura, Karlseder Jan

机构信息

The Salk Institute for Biological Studies, La Jolla, CA, USA.

出版信息

Nat Rev Mol Cell Biol. 2025 Apr;26(4):297-313. doi: 10.1038/s41580-024-00800-5. Epub 2024 Nov 29.

Abstract

Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.

摘要

端粒保护染色体末端,但在缺乏端粒酶活性的情况下,细胞分裂后端粒会缩短。当端粒变得极度缩短或受损时,会激活DNA损伤反应。然后端粒功能失调,引发细胞衰老或死亡。端粒缩短随年龄增长而发生,可能导致诸如不孕、神经退行性变、癌症、肺功能障碍和造血障碍等相关疾病。端粒功能失调(有时无缩短)与各种疾病相关,称为端粒生物学障碍(也称为端粒病)。端粒生物学障碍包括先天性角化不良、霍耶拉尔-赫雷达尔松综合征、科茨加综合征和雷维斯综合征。尽管小鼠模型在推进端粒研究方面具有重要价值,但由于物种之间的关键差异,在小鼠中完全重现人类端粒相关疾病一直具有挑战性。在本综述中,我们讨论端粒保护、维持和损伤。我们强调人类和小鼠端粒生物学之间的差异,这些差异可能导致人类疾病与小鼠模型之间的差异。最后,我们讨论了最近为生成新的“人源化”小鼠模型以更好地模拟人类端粒生物学所做的努力。更好地理解小鼠端粒模型的局限性将为更接近人类的模型铺平道路,并加深我们对端粒生物学障碍的理解,这将有助于开发新的治疗方法。

相似文献

1
Telomere function and regulation from mouse models to human ageing and disease.
Nat Rev Mol Cell Biol. 2025 Apr;26(4):297-313. doi: 10.1038/s41580-024-00800-5. Epub 2024 Nov 29.
2
Telomere-driven diseases and telomere-targeting therapies.
J Cell Biol. 2017 Apr 3;216(4):875-887. doi: 10.1083/jcb.201610111. Epub 2017 Mar 2.
3
Human telomeres and telomere biology disorders.
Prog Mol Biol Transl Sci. 2014;125:41-66. doi: 10.1016/B978-0-12-397898-1.00002-5.
5
Genetics of human telomere biology disorders.
Nat Rev Genet. 2023 Feb;24(2):86-108. doi: 10.1038/s41576-022-00527-z. Epub 2022 Sep 23.
6
Heart-Breaking Telomeres.
Circ Res. 2018 Sep 14;123(7):787-802. doi: 10.1161/CIRCRESAHA.118.312202.
7
Consequences of telomere shortening during lifespan.
Curr Opin Cell Biol. 2012 Dec;24(6):804-8. doi: 10.1016/j.ceb.2012.09.007. Epub 2012 Nov 2.
8
Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3408-16. doi: 10.1073/pnas.1300600110. Epub 2013 Aug 19.
9
The biology and management of dyskeratosis congenita and related disorders of telomeres.
Expert Rev Hematol. 2022 Aug;15(8):685-696. doi: 10.1080/17474086.2022.2108784. Epub 2022 Aug 8.

引用本文的文献

1
Class IIa HDACs Are Important Signal Transducers with Unclear Enzymatic Activities.
Biomolecules. 2025 Jul 22;15(8):1061. doi: 10.3390/biom15081061.
2
The house mouse maintains constant telomere length throughout life.
Nucleic Acids Res. 2025 Aug 27;53(16). doi: 10.1093/nar/gkaf830.
3
Cellular senescence in cancer: from mechanism paradoxes to precision therapeutics.
Mol Cancer. 2025 Aug 8;24(1):213. doi: 10.1186/s12943-025-02419-2.
5
Reading the DNA of telomeres.
Elife. 2025 Jun 18;14:e107648. doi: 10.7554/eLife.107648.

本文引用的文献

1
Loss of function of recapitulates phenotypes of alternative lengthening of telomeres in a primary mouse model of sarcoma.
iScience. 2025 Apr 3;28(5):112357. doi: 10.1016/j.isci.2025.112357. eCollection 2025 May 16.
3
Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging.
Cell. 2024 Nov 27;187(24):7025-7044.e34. doi: 10.1016/j.cell.2024.10.019. Epub 2024 Nov 4.
4
High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer.
Nat Commun. 2024 Jun 18;15(1):5149. doi: 10.1038/s41467-024-48917-7.
5
POT1 recruits and regulates CST-Polα/primase at human telomeres.
Cell. 2024 Jul 11;187(14):3638-3651.e18. doi: 10.1016/j.cell.2024.05.002. Epub 2024 Jun 4.
6
CST-polymerase α-primase solves a second telomere end-replication problem.
Nature. 2024 Mar;627(8004):664-670. doi: 10.1038/s41586-024-07137-1. Epub 2024 Feb 28.
7
The regulations of telomerase reverse transcriptase (TERT) in cancer.
Cell Death Dis. 2024 Jan 26;15(1):90. doi: 10.1038/s41419-024-06454-7.
8
Telomeres, cellular senescence, and aging: past and future.
Biogerontology. 2024 Apr;25(2):329-339. doi: 10.1007/s10522-023-10085-4. Epub 2023 Dec 27.
9
Telomeres as hotspots for innate immunity and inflammation.
DNA Repair (Amst). 2024 Jan;133:103591. doi: 10.1016/j.dnarep.2023.103591. Epub 2023 Nov 5.
10
Telomouse-a mouse model with human-length telomeres generated by a single amino acid change in RTEL1.
Nat Commun. 2023 Oct 23;14(1):6708. doi: 10.1038/s41467-023-42534-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验