Lu Xiaolin, Xu Xianghan, Ding Yushi, Gong Xin, Ming Liqin, Dai Xingyang, Gu Congying, Wang Jiayi, Zhao Jiaqi, Gao Mengkang, Yin Hao, Wang Zhi, Wang Xiaoming, Wang Liping, Zhang Dayong, Zhang Menghan, Huang Jinhu
School of Science, China Pharmaceutical University, Nanjing, 211198, China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China.
MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, 572025, China.
Eur J Med Chem. 2025 Feb 5;283:117101. doi: 10.1016/j.ejmech.2024.117101. Epub 2024 Nov 26.
Increasing antimicrobial resistance underscores the urgent need for new antibiotics with unique mechanisms. Type I signal peptidase (SPase I) is crucial for bacterial survival and a promising target for antibiotics. Herein we designed and synthesized innovative tetrahydroacridine-9-carboxylic acid derivatives by optimizing the initial hit compound SP11 based on virtual screening. Structure-activity relationship (SAR) studies and bioactivity assessments identified compound C09 as a standout, showing excellent in vitro antimicrobial activity against MRSA and other multidrug-resistant Gram-positive pathogens. C09 targets SPase I with a favorable affinity, disrupts bacterial cell membranes, and eradicates biofilms, reducing resistance risk. In vivo tests in a murine MRSA skin infection model demonstrated significant efficacy. Additionally, C09 has good liver microsome metabolic stability, safe hemolytic activity and mammalian cytotoxicity, as well as a good in vivo safety profile. Overall, our findings highlight the potential of tetrahydroacridine-9-carboxylic acid derivatives as a novel class of antibiotics against multidrug-resistant Gram-positive bacteria.
日益增加的抗菌药物耐药性凸显了对具有独特作用机制的新型抗生素的迫切需求。I型信号肽酶(SPase I)对细菌存活至关重要,是抗生素的一个有前景的靶点。在此,我们通过基于虚拟筛选优化初始命中化合物SP11,设计并合成了创新的四氢吖啶-9-羧酸衍生物。构效关系(SAR)研究和生物活性评估确定化合物C09表现突出,对耐甲氧西林金黄色葡萄球菌(MRSA)和其他多重耐药革兰氏阳性病原体显示出优异的体外抗菌活性。C09以良好的亲和力靶向SPase I,破坏细菌细胞膜并根除生物膜,降低耐药风险。在小鼠MRSA皮肤感染模型中的体内试验证明了其显著疗效。此外,C09具有良好的肝微粒体代谢稳定性、安全的溶血活性和哺乳动物细胞毒性,以及良好的体内安全性。总体而言,我们的研究结果突出了四氢吖啶-9-羧酸衍生物作为一类新型抗多重耐药革兰氏阳性菌抗生素的潜力。