Suppr超能文献

用于嵌合抗原受体单核细胞工程的氧化mRNA脂质纳米颗粒

Oxidized mRNA Lipid Nanoparticles for Chimeric Antigen Receptor Monocyte Engineering.

作者信息

Mukalel Alvin J, Hamilton Alex G, Billingsley Margaret M, Li Jacqueline, Thatte Ajay S, Han Xuexiang, Safford Hannah C, Padilla Marshall S, Papp Tyler, Parhiz Hamideh, Weissman Drew, Mitchell Michael J

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Adv Funct Mater. 2024 Jul 3;34(27). doi: 10.1002/adfm.202312038. Epub 2024 Mar 5.

Abstract

Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques. Here, ionizable lipid design and high-throughput screening are utilized to identify a new class of oxidized LNPs with innate tropism and mRNA delivery to monocytes. A library of oxidized (oLNPs) and unoxidized LNPs (uLNPs) is synthesized to evaluate mRNA delivery to immune cells. oLNPs demonstrate notable differences in morphology, ionization energy, and p, therefore enhancing delivery to human macrophages, but not T cells. Subsequently, library screening with DNA barcodes identifies an oLNP formulation, C14-O2, with innate tropism to monocytes. In a proof-of-concept study, the C14-O2 LNP is used to engineer functional CD19-CAR monocytes for robust B cell aplasia (45%) in healthy mice. This work highlights the utility of oxidized LNPs as a promising platform for engineering CAR macrophages/monocytes for solid tumor CAR monocyte therapy.

摘要

嵌合抗原受体(CAR)单核细胞和巨噬细胞疗法是很有前景的实体瘤免疫疗法,能够克服传统CAR T细胞疗法面临的挑战。信使核糖核酸脂质纳米颗粒(mRNA-LNPs)为工程化改造CAR单核细胞提供了一个可行的平台,可实现CAR的瞬时和可调节表达,以降低肿瘤外毒性并简化细胞制造过程。然而,使用传统筛选技术很难鉴定出具有单核细胞嗜性和细胞内递送能力的LNPs。在此,利用可电离脂质设计和高通量筛选来鉴定一类新的具有天然嗜性且能将mRNA递送至单核细胞的氧化型LNPs。合成了一个氧化型(oLNPs)和未氧化型LNPs(uLNPs)文库,以评估mRNA向免疫细胞的递送情况。oLNPs在形态、电离能和p方面表现出显著差异,因此增强了对人巨噬细胞而非T细胞的递送。随后,通过DNA条形码进行文库筛选,鉴定出一种对单核细胞具有天然嗜性的oLNP制剂C14-O2。在一项概念验证研究中,C14-O2 LNP被用于工程化改造功能性CD19-CAR单核细胞,从而在健康小鼠中实现了强劲的B细胞发育不全(45%)。这项工作突出了氧化型LNPs作为一个有前景的平台在工程化改造CAR巨噬细胞/单核细胞用于实体瘤CAR单核细胞疗法方面的效用。

相似文献

1
Oxidized mRNA Lipid Nanoparticles for Chimeric Antigen Receptor Monocyte Engineering.
Adv Funct Mater. 2024 Jul 3;34(27). doi: 10.1002/adfm.202312038. Epub 2024 Mar 5.
2
B cell antigens: A key to optimizing CAR-T cell therapy.
Int Rev Immunol. 2025 Jun 19:1-28. doi: 10.1080/08830185.2025.2515839.
3
Safflower-Derived Cationic Lipid Nanoparticles: Potential Impact on the Delivery of SARS-CoV-2 MRNA Transcripts.
Arch Razi Inst. 2024 Dec 31;79(6):1217-1226. doi: 10.32592/ARI.2024.79.6.1217. eCollection 2024 Dec.
4
EGFR-targeted ionizable lipid nanoparticles enhance in vivo mRNA delivery to the placenta.
J Control Release. 2024 Jul;371:455-469. doi: 10.1016/j.jconrel.2024.05.036. Epub 2024 Jun 10.
7
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.
Cochrane Database Syst Rev. 2021 Sep 13;9(9):CD013365. doi: 10.1002/14651858.CD013365.pub2.
10
Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen.
J Am Chem Soc. 2025 Jan 15;147(2):1542-1552. doi: 10.1021/jacs.4c10265. Epub 2025 Jan 1.

引用本文的文献

2
3
CAR-Macrophage Cell Therapy: A New Era of Hope for Pancreatic Cancer.
Clin Cancer Res. 2025 Aug 4. doi: 10.1158/1078-0432.CCR-25-1201.
4
Natural carrier systems in cancer vaccines and immunotherapy.
Hum Vaccin Immunother. 2025 Dec;21(1):2535787. doi: 10.1080/21645515.2025.2535787. Epub 2025 Jul 24.
5
In vivo generation of CAR macrophages via the enucleated mesenchymal stem cell delivery system for glioblastoma therapy.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2426724122. doi: 10.1073/pnas.2426724122. Epub 2025 Jul 14.
6
In vivo CAR engineering for immunotherapy.
Nat Rev Immunol. 2025 May 16. doi: 10.1038/s41577-025-01174-1.
7
Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo.
Small Sci. 2024 Jul 30;4(9):2400248. doi: 10.1002/smsc.202400248. eCollection 2024 Sep.
8
CAR-macrophages: tailoring cancer immunotherapy.
Front Immunol. 2025 Jan 14;15:1532833. doi: 10.3389/fimmu.2024.1532833. eCollection 2024.
9
Pooled Nanoparticle Screening Using a Chemical Barcoding Approach.
Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202420052. doi: 10.1002/anie.202420052. Epub 2025 Jan 7.
10
Better, Faster, Stronger: Accelerating mRNA-Based Immunotherapies With Nanocarriers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Nov-Dec;16(6):e2017. doi: 10.1002/wnan.2017.

本文引用的文献

1
Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2301067120. doi: 10.1073/pnas.2301067120. Epub 2023 Jun 26.
3
Induction of Bleb Structures in Lipid Nanoparticle Formulations of mRNA Leads to Improved Transfection Potency.
Adv Mater. 2023 Aug;35(31):e2303370. doi: 10.1002/adma.202303370. Epub 2023 Jun 25.
4
A Combinatorial Library of Lipid Nanoparticles for Cell Type-Specific mRNA Delivery.
Adv Sci (Weinh). 2023 Jul;10(19):e2301929. doi: 10.1002/advs.202301929. Epub 2023 Apr 24.
5
Therapeutic utility of engineered myeloid cells in the tumor microenvironment.
Cancer Gene Ther. 2023 Jul;30(7):964-972. doi: 10.1038/s41417-023-00600-7. Epub 2023 Feb 28.
6
Four challenges to CAR T cells breaking the glass ceiling.
Eur J Immunol. 2023 Nov;53(11):e2250039. doi: 10.1002/eji.202250039. Epub 2023 Jan 11.
7
Payload distribution and capacity of mRNA lipid nanoparticles.
Nat Commun. 2022 Sep 23;13(1):5561. doi: 10.1038/s41467-022-33157-4.
8
Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy.
J Hematol Oncol. 2022 Aug 28;15(1):118. doi: 10.1186/s13045-022-01335-y.
10
Myeloid cell-targeted therapies for solid tumours.
Nat Rev Immunol. 2023 Feb;23(2):106-120. doi: 10.1038/s41577-022-00737-w. Epub 2022 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验