Suppr超能文献

CRISPR相关转座子在细菌功能基因组学中的前景。

The promise of CRISPR-associated transposons for bacterial functional genomics.

作者信息

Banta Amy B, Cuellar Rodrigo A, Nadig Nischala, Davis Bryce C, Peters Jason M

机构信息

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA.

出版信息

Curr Opin Microbiol. 2025 Feb;83:102563. doi: 10.1016/j.mib.2024.102563. Epub 2024 Dec 3.

Abstract

CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn7-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) - likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from Vibrio cholerae (VcCAST) and type V-K CAST from Scytonema hofmanni (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.

摘要

CRISPR相关转座子(CASTs)是CRISPR-Cas机制与Tn7样转座子的天然融合体,可通过可编程的引导RNA指导转座子DNA的位点特异性整合。尽管基于CAST的转座机制在分子和结构层面已得到充分研究,但CASTs尚未广泛应用于细菌基因组工程和系统基因表型分析(即功能基因组学)——这可能是由于它们相对较新才被发现。在此,我们描述了CASTs的功能和应用,重点关注特征明确的系统,包括来自霍乱弧菌的I-F型CAST(VcCAST)和来自霍氏伪枝藻的V-K型CAST(ShCAST)。此外,我们通过提出对现有CAST工具进行基因组规模扩展的方案,探讨了靶向转座对细菌功能基因组学可能产生的变革性影响。

相似文献

1
The promise of CRISPR-associated transposons for bacterial functional genomics.
Curr Opin Microbiol. 2025 Feb;83:102563. doi: 10.1016/j.mib.2024.102563. Epub 2024 Dec 3.
2
Metagenomic discovery of CRISPR-associated transposons.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2112279118.
3
Dual modes of CRISPR-associated transposon homing.
Cell. 2021 Apr 29;184(9):2441-2453.e18. doi: 10.1016/j.cell.2021.03.006. Epub 2021 Mar 25.
4
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
5
Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
Mol Cell. 2022 Feb 3;82(3):616-628.e5. doi: 10.1016/j.molcel.2021.12.021. Epub 2022 Jan 19.
6
Mechanistic details of CRISPR-associated transposon recruitment and integration revealed by cryo-EM.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2202590119. doi: 10.1073/pnas.2202590119. Epub 2022 Aug 1.
7
Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons.
Nat Commun. 2024 Aug 6;15(1):6653. doi: 10.1038/s41467-024-50816-w.
8
Structures of the holo CRISPR RNA-guided transposon integration complex.
Nature. 2023 Jan;613(7945):775-782. doi: 10.1038/s41586-022-05573-5. Epub 2022 Nov 28.
9
Genome editing using CRISPR, CAST, and Fanzor systems.
Mol Cells. 2024 Jul;47(7):100086. doi: 10.1016/j.mocell.2024.100086. Epub 2024 Jun 21.
10
Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
Mol Cell. 2024 Jun 20;84(12):2353-2367.e5. doi: 10.1016/j.molcel.2024.05.005. Epub 2024 Jun 3.

引用本文的文献

1
Lineage-specific defence systems of pandemic .
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240076. doi: 10.1098/rstb.2024.0076.
2
Graph Attention Neural Networks Reveal TnsC Filament Assembly in a CRISPR-Associated Transposon.
bioRxiv. 2025 Jun 17:2025.06.17.659969. doi: 10.1101/2025.06.17.659969.

本文引用的文献

1
Diverse anti-defence systems are encoded in the leading region of plasmids.
Nature. 2024 Nov;635(8037):186-192. doi: 10.1038/s41586-024-07994-w. Epub 2024 Oct 9.
2
A CRISPR-Cas-associated transposon system for genome editing in complex species.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0069924. doi: 10.1128/aem.00699-24. Epub 2024 Jun 13.
3
Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
Annu Rev Biochem. 2024 Aug;93(1):139-161. doi: 10.1146/annurev-biochem-030122-041908. Epub 2024 Jul 2.
4
Bacterial genome engineering using CRISPR-associated transposases.
Nat Protoc. 2024 Mar;19(3):752-790. doi: 10.1038/s41596-023-00927-3. Epub 2024 Jan 12.
5
Targeted Transcriptional Activation Using a CRISPR-Associated Transposon System.
ACS Synth Biol. 2024 Jan 19;13(1):328-336. doi: 10.1021/acssynbio.3c00563. Epub 2023 Dec 12.
6
Mechanism of target site selection by type V-K CRISPR-associated transposases.
Science. 2023 Nov 17;382(6672):eadj8543. doi: 10.1126/science.adj8543.
7
CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
ACS Synth Biol. 2023 Jul 21;12(7):1989-2003. doi: 10.1021/acssynbio.3c00065. Epub 2023 Jun 27.
8
Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox.
Biochemistry. 2023 Dec 19;62(24):3465-3487. doi: 10.1021/acs.biochem.3c00159. Epub 2023 May 16.
9
Novel molecular requirements for CRISPR RNA-guided transposition.
Nucleic Acids Res. 2023 May 22;51(9):4519-4535. doi: 10.1093/nar/gkad270.
10
Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases.
Nat Biotechnol. 2024 Jan;42(1):87-98. doi: 10.1038/s41587-023-01748-1. Epub 2023 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验