Suppr超能文献

一项关于医疗保健中儿童脓毒症预测技术的范围综述。

A scoping review on pediatric sepsis prediction technologies in healthcare.

作者信息

Tennant Ryan, Graham Jennifer, Kern Juliet, Mercer Kate, Ansermino J Mark, Burns Catherine M

机构信息

Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, 200 University Avenue West, Waterloo, N2L3G1, Ontario, Canada.

Department of Psychology, University of Waterloo, 200 University Avenue West, Waterloo, N2L3G1, Ontario, Canada.

出版信息

NPJ Digit Med. 2024 Dec 4;7(1):353. doi: 10.1038/s41746-024-01361-9.

Abstract

This scoping review evaluates recent advancements in data-driven technologies for predicting non-neonatal pediatric sepsis, including artificial intelligence, machine learning, and other methodologies. Of the 27 included studies, 23 (85%) were single-center investigations, and 16 (59%) used logistic regression. Notably, 20 (74%) studies used datasets with a low prevalence of sepsis-related outcomes, with area under the receiver operating characteristic scores ranging from 0.56 to 0.99. Prediction time points varied widely, and development characteristics, performance metrics, implementation outcomes, and considerations for human factors-especially workflow integration and clinical judgment-were inconsistently reported. The variations in endpoint definitions highlight the potential significance of the 2024 consensus criteria in future development. Future research should strengthen the involvement of clinical users to enhance the understanding and integration of human factors in designing and evaluating these technologies, ultimately aiming for safe and effective integration in pediatric healthcare.

摘要

本综述性研究评估了用于预测非新生儿小儿败血症的数据驱动技术的最新进展,包括人工智能、机器学习和其他方法。在纳入的27项研究中,23项(85%)为单中心研究,16项(59%)使用了逻辑回归。值得注意的是,20项(74%)研究使用了败血症相关结局患病率较低的数据集,受试者工作特征曲线下面积分数范围为0.56至0.99。预测时间点差异很大,开发特征、性能指标、实施结果以及人为因素的考量——尤其是工作流程整合和临床判断——报告不一致。终点定义的差异凸显了2024年共识标准在未来发展中的潜在重要性。未来的研究应加强临床用户的参与,以增强在设计和评估这些技术时对人为因素的理解和整合,最终目标是在儿科医疗保健中实现安全有效的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9076/11618667/c04e539054c1/41746_2024_1361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验