Weber Natalie, Montag Judith, Kowalski Kathrin, Iorga Bogdan, de la Roche Jeanne, Holler Tim, Wojciechowski Daniel, Wendland Meike, Radocaj Ante, Mayer Anne-Kathrin, Brunkhorst Anja, Osten Felix, Burkart Valentin, Piep Birgit, Bodenschatz Alea, Gibron Pia, Schwanke Kristin, Franke Annika, Thiemann Stefan, Koroleva Anastasia, Pfanne Angelika, Konsanke Maike, Fiedler Jan, Hegermann Jan, Wrede Christoph, Mühlfeld Christian, Chichkov Boris, Fischer Martin, Thum Thomas, Francino Antonio, Martin Ulrich, Meißner Joachim, Zweigerdt Robert, Kraft Theresia
Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany; Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany; Department of Human Medicine, Medical School Berlin, Berlin, Germany.
J Mol Cell Cardiol. 2025 Jan;198:112-125. doi: 10.1016/j.yjmcc.2024.11.007. Epub 2024 Dec 7.
Hypertrophic Cardiomyopathy (HCM) is often caused by heterozygous mutations in β-myosin heavy chain (MYH7, β-MyHC). In addition to hyper- or hypocontractile effects of HCM-mutations, heterogeneity in contractile function (contractile imbalance) among individual cardiomyocytes was observed in end-stage HCM-myocardium. Contractile imbalance might be induced by burst-like transcription, leading to unequal fractions of mutant versus wildtype mRNA and protein in individual cardiomyocytes (allelic imbalance). Until now it is not known if allelic and contractile imbalance are present early in HCM-development or rather occur in response to disease-associated remodeling. To address this question, we used patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with heterozygous MYH7-mutations R723G and G741R as models of early-stage HCM without secondary adaptions upon disease progression. R723G-hiPSC-CMs showed typical HCM-markers like hypertrophy and myofibrillar disarray. Using RNA-FISH and allele-specific single-cell-PCR, we show for both cell lines that MYH7 is transcribed in bursts. Highly variable mutant vs. wildtype MYH7-mRNA fractions in individual HCM-hiPSC-CMs indicated allelic imbalance. HCM-hiPSC-CM-lines showed functional alterations like slowed twitch contraction kinetics and reduced calcium sensitivity of myofibrillar force generation. A significantly larger variability in force generation or twitch parameters of individual HCM-hiPSC-CMs compared to WT-hiPSC-CMs indicated contractile imbalance. Our results with early-stage hiPSC-CMs strongly suggest that burst-like transcription and allelic imbalance are general features of CMs, which together with mutation-induced changes of sarcomere contraction could induce contractile imbalance in heterozygous CMs, presumably aggravating development of HCM. Genetic or epigenetic approaches targeting functional heterogeneity in HCM could lead to promising future therapies, in addition to myosin modulation.
肥厚型心肌病(HCM)通常由β-肌球蛋白重链(MYH7,β-MyHC)的杂合突变引起。除了HCM突变的收缩增强或减弱效应外,在终末期HCM心肌中还观察到单个心肌细胞收缩功能的异质性(收缩失衡)。收缩失衡可能由爆发式转录诱导,导致单个心肌细胞中突变型与野生型mRNA和蛋白质的比例不等(等位基因失衡)。到目前为止,尚不清楚等位基因和收缩失衡是在HCM发展的早期就存在,还是在疾病相关重塑的反应中才出现。为了解决这个问题,我们使用具有杂合MYH7突变R723G和G741R的患者特异性人诱导多能干细胞衍生心肌细胞(hiPSC-CMs)作为早期HCM的模型,且不存在疾病进展后的二次适应。R723G-hiPSC-CMs表现出典型的HCM标志物,如肥大和肌原纤维紊乱。使用RNA-FISH和等位基因特异性单细胞PCR,我们发现这两种细胞系中MYH7均以爆发形式转录。单个HCM-hiPSC-CMs中高度可变的突变型与野生型MYH7-mRNA比例表明存在等位基因失衡。HCM-hiPSC-CM系表现出功能改变,如抽搐收缩动力学减慢和肌原纤维力产生的钙敏感性降低。与野生型hiPSC-CMs相比,单个HCM-hiPSC-CMs在力产生或抽搐参数上的显著更大变异性表明存在收缩失衡。我们对早期hiPSC-CMs的研究结果强烈表明,爆发式转录和等位基因失衡是心肌细胞的普遍特征,它们与突变诱导的肌节收缩变化一起,可能在杂合心肌细胞中诱导收缩失衡,大概会加重HCM的发展。除了肌球蛋白调节外,针对HCM功能异质性的遗传或表观遗传方法可能会带来有前景的未来治疗方法。