Suppr超能文献

利用细胞外囊泡介导的T细胞与癌细胞之间的串扰用于治疗应用。

Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications.

作者信息

Budayr Omar M, Miller Brian C, Nguyen Juliane

机构信息

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

J Control Release. 2025 Feb 10;378:266-280. doi: 10.1016/j.jconrel.2024.12.011. Epub 2024 Dec 16.

Abstract

Small extracellular vesicles (EVs) are a diverse group of lipid-based particles that are ≤200 nm in diameter and contain an aqueous core. EVs have been shown to mediate intercellular communications between a wide array of immune cells; the downstream effects are diverse and have potential implications for the development of novel immunotherapeutic treatments. Despite a high volume of studies addressing the role EVs play in the immune system, our understanding of the crosstalk between T cells and cancer cells remains limited. Here, we discuss how EVs derived from cancer cells modulate T cell functions and conversely, how T cell derived EVs are crucial in modulating adaptive immune functions. In the context of cancer, tumor derived EVs (TD-EVs) halt T cell-mediated immunity by interfering with effector functions and enhancing regulatory T cell (Treg) functions. In contrast, EVs derived from effector T cells can serve to stimulate anticancer immunity, curbing metastasis and tumor growth. These findings highlight important aspects of how EVs can both mediate the therapeutic effects of T cells as well as impair T cell-mediated immunity. This calls for a deeper understanding of EV-mediated effects in order to advance them as next-generation therapeutics and nanocarriers.

摘要

小细胞外囊泡(EVs)是一类多样的脂质颗粒,直径≤200纳米,含有水相核心。EVs已被证明可介导多种免疫细胞之间的细胞间通讯;其下游效应多种多样,对新型免疫治疗方法的开发具有潜在意义。尽管有大量研究探讨了EVs在免疫系统中的作用,但我们对T细胞与癌细胞之间的相互作用的了解仍然有限。在这里,我们讨论癌细胞衍生的EVs如何调节T细胞功能,反之,T细胞衍生的EVs在调节适应性免疫功能中如何发挥关键作用。在癌症背景下,肿瘤衍生的EVs(TD-EVs)通过干扰效应功能和增强调节性T细胞(Treg)功能来阻止T细胞介导的免疫。相比之下,效应T细胞衍生的EVs可用于刺激抗癌免疫,抑制转移和肿瘤生长。这些发现突出了EVs如何既能介导T细胞的治疗效果又能损害T细胞介导的免疫的重要方面。这需要更深入地了解EV介导的效应,以便将其作为下一代治疗方法和纳米载体加以推进。

相似文献

1
Harnessing extracellular vesicle-mediated crosstalk between T cells and cancer cells for therapeutic applications.
J Control Release. 2025 Feb 10;378:266-280. doi: 10.1016/j.jconrel.2024.12.011. Epub 2024 Dec 16.
2
The Yin and Yang of tumour-derived extracellular vesicles in tumour immunity.
J Biochem. 2021 Mar 5;169(2):155-161. doi: 10.1093/jb/mvaa132.
4
Immune Cell-Derived Extracellular Vesicles - New Strategies in Cancer Immunotherapy.
Front Immunol. 2021 Dec 8;12:771551. doi: 10.3389/fimmu.2021.771551. eCollection 2021.
5
The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy.
Expert Opin Investig Drugs. 2024 Jul;33(7):721-740. doi: 10.1080/13543784.2024.2360209. Epub 2024 May 30.
6
Extracellular vesicles in tumor immunity: mechanisms and novel insights.
Mol Cancer. 2025 Feb 14;24(1):45. doi: 10.1186/s12943-025-02233-w.
8
Extracellular vesicles derived from immune cells: Role in tumor therapy.
Int Immunopharmacol. 2024 May 30;133:112150. doi: 10.1016/j.intimp.2024.112150. Epub 2024 Apr 25.
9
The interweaving relationship between extracellular vesicles and T cells in cancer.
Cancer Lett. 2022 Apr 1;530:1-7. doi: 10.1016/j.canlet.2021.12.007. Epub 2021 Dec 11.
10
Harnessing EV communication to restore antitumor immunity.
Adv Drug Deliv Rev. 2021 Sep;176:113838. doi: 10.1016/j.addr.2021.113838. Epub 2021 Jun 16.

引用本文的文献

1
Nanocarrier drug delivery systems for gynecological cancer therapeutics.
J Control Release. 2025 Sep 10;385:114028. doi: 10.1016/j.jconrel.2025.114028. Epub 2025 Jul 17.
2
GNG7 as a tumor-suppressor gene in lung adenocarcinoma: implications for prognosis and immune-based therapies.
Front Oncol. 2025 May 27;15:1588646. doi: 10.3389/fonc.2025.1588646. eCollection 2025.
3

本文引用的文献

1
In situ-crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention.
Bioeng Transl Med. 2024 Aug 20;9(6):e10697. doi: 10.1002/btm2.10697. eCollection 2024 Nov.
2
CD81 fusion alters SARS-CoV-2 Spike trafficking.
mBio. 2024 Sep 11;15(9):e0192224. doi: 10.1128/mbio.01922-24. Epub 2024 Aug 14.
4
ELISA-based detection of immunoglobulins against extracellular vesicles in blood plasma.
J Extracell Biol. 2024 Mar 7;3(3):e129. doi: 10.1002/jex2.129. eCollection 2024 Mar.
5
Antibody-displaying extracellular vesicles for targeted cancer therapy.
Nat Biomed Eng. 2024 Nov;8(11):1453-1468. doi: 10.1038/s41551-024-01214-6. Epub 2024 May 20.
7
Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent.
Nat Nanotechnol. 2024 Jun;19(6):846-855. doi: 10.1038/s41565-023-01585-y. Epub 2024 Feb 16.
8
9
Uptake of extracellular vesicles into immune cells is enhanced by the protein corona.
J Extracell Vesicles. 2023 Dec;12(12):e12399. doi: 10.1002/jev2.12399.
10
Second-Line Chimeric Antigen Receptor T-Cell Therapy in Diffuse Large B-Cell Lymphoma : A Cost-Effectiveness Analysis.
Ann Intern Med. 2023 Dec;176(12):1625-1637. doi: 10.7326/M22-2276. Epub 2023 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验