Suppr超能文献

嵌合抗原受体T细胞纳米共生体:揭示一种新型二元组合的无限潜力。

CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad.

作者信息

Baena Juan C, Pérez Lucy M, Toro-Pedroza Alejandro, Kitawaki Toshio, Loukanov Alexandre

机构信息

Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia.

LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia.

出版信息

Int J Mol Sci. 2024 Dec 7;25(23):13157. doi: 10.3390/ijms252313157.

Abstract

Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.

摘要

传统上,癌症治疗主要集中在消除肿瘤细胞上,但面临着诸如耐药性和毒性等挑战。一个有前景的方向是使用嵌合抗原受体(CAR)T细胞免疫疗法靶向肿瘤微环境,该疗法已显示出治疗复发和难治性癌症的潜力,但受到高成本、耐药性和毒性的限制,尤其是在实体瘤中。将纳米技术整合到ICAM细胞疗法中,我们将这一概念命名为“CAR T纳米共生”,为克服这些挑战提供了新的机会。纳米材料可以增强CAR T细胞的递送、制造、活性调节以及对肿瘤微环境的靶向作用,从而实现更好的控制和精准度。这种方法旨在提高CAR T细胞对实体瘤的疗效,降低相关毒性,并最终改善患者预后。多项研究已显示出有前景的结果,进一步开发这种疗法对于提高其可及性和有效性至关重要。我们的“减法加法模型”将这些多方面的要素整合为一个统一的策略,以推动癌症治疗范式的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034a/11642191/82e6ce488020/ijms-25-13157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验