Suppr超能文献

通过条件频率谱表征复杂性状的选择。

Characterizing selection on complex traits through conditional frequency spectra.

作者信息

Patel Roshni A, Weiß Clemens L, Zhu Huisheng, Mostafavi Hakhamanesh, Simons Yuval B, Spence Jeffrey P, Pritchard Jonathan K

机构信息

Department of Genetics, Stanford University, Stanford, CA 94305, USA.

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae210.

Abstract

Natural selection on complex traits is difficult to study in part due to the ascertainment inherent to genome-wide association studies (GWAS). The power to detect a trait-associated variant in GWAS is a function of its frequency and effect size - but for traits under selection, the effect size of a variant determines the strength of selection against it, constraining its frequency. Recognizing the biases inherent to GWAS ascertainment, we propose studying the joint distribution of allele frequencies across populations, conditional on the frequencies in the GWAS cohort. Before considering these conditional frequency spectra, we first characterized the impact of selection and non-equilibrium demography on allele frequency dynamics forwards and backwards in time. We then used these results to understand conditional frequency spectra under realistic human demography. Finally, we investigated empirical conditional frequency spectra for GWAS variants associated with 106 complex traits, finding compelling evidence for either stabilizing or purifying selection. Our results provide insights into polygenic score portability and other properties of variants ascertained with GWAS, highlighting the utility of conditional frequency spectra.

摘要

对复杂性状的自然选择难以研究,部分原因在于全基因组关联研究(GWAS)中固有的确定过程。在GWAS中检测与性状相关变异的能力是其频率和效应大小的函数——但对于处于选择中的性状,变异的效应大小决定了针对它的选择强度,从而限制了其频率。认识到GWAS确定过程中固有的偏差,我们建议研究各群体中等位基因频率的联合分布,并以GWAS队列中的频率为条件。在考虑这些条件频率谱之前,我们首先描述了选择和非平衡人口统计学对不同时间方向上等位基因频率动态的影响。然后,我们利用这些结果来理解现实人类人口统计学下的条件频率谱。最后,我们研究了与106个复杂性状相关的GWAS变异的经验条件频率谱,发现了稳定选择或纯化选择的有力证据。我们的结果为多基因评分的可移植性以及通过GWAS确定的变异的其他特性提供了见解,突出了条件频率谱的实用性。

相似文献

1
Characterizing selection on complex traits through conditional frequency spectra.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyae210.
2
Conditional frequency spectra as a tool for studying selection on complex traits in biobanks.
bioRxiv. 2024 Jun 17:2024.06.15.599126. doi: 10.1101/2024.06.15.599126.
4
A path integral approach for allele frequency dynamics under polygenic selection.
Genetics. 2025 Jan 8;229(1):1-63. doi: 10.1093/genetics/iyae182.
6
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
9
Atypical antipsychotics for disruptive behaviour disorders in children and youths.
Cochrane Database Syst Rev. 2012 Sep 12(9):CD008559. doi: 10.1002/14651858.CD008559.pub2.
10
Calorie (energy) labelling for changing selection and consumption of food or alcohol.
Cochrane Database Syst Rev. 2025 Jan 17;1(1):CD014845. doi: 10.1002/14651858.CD014845.pub2.

引用本文的文献

1
Biobanks in GENETICS and G3: tackling the statistical challenges.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyaf046.
2
Biobanks in GENETICS and G3: tackling the statistical challenges.
G3 (Bethesda). 2025 Apr 17;15(4). doi: 10.1093/g3journal/jkaf060.
3
A Litmus Test for Confounding in Polygenic Scores.
bioRxiv. 2025 Feb 4:2025.02.01.635985. doi: 10.1101/2025.02.01.635985.
4
Specificity, length, and luck: How genes are prioritized by rare and common variant association studies.
bioRxiv. 2024 Dec 16:2024.12.12.628073. doi: 10.1101/2024.12.12.628073.
5
Three Open Questions in Polygenic Score Portability.
bioRxiv. 2024 Aug 21:2024.08.20.608703. doi: 10.1101/2024.08.20.608703.

本文引用的文献

1
Systematic differences in discovery of genetic effects on gene expression and complex traits.
Nat Genet. 2023 Nov;55(11):1866-1875. doi: 10.1038/s41588-023-01529-1. Epub 2023 Oct 19.
2
Scaling the discrete-time Wright-Fisher model to biobank-scale datasets.
Genetics. 2023 Nov 1;225(3). doi: 10.1093/genetics/iyad168.
3
Polygenic scoring accuracy varies across the genetic ancestry continuum.
Nature. 2023 Jun;618(7966):774-781. doi: 10.1038/s41586-023-06079-4. Epub 2023 May 17.
4
Polygenic architecture of rare coding variation across 394,783 exomes.
Nature. 2023 Feb;614(7948):492-499. doi: 10.1038/s41586-022-05684-z. Epub 2023 Feb 8.
5
Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains.
Nat Genet. 2023 Feb;55(2):198-208. doi: 10.1038/s41588-022-01285-8. Epub 2023 Jan 26.
6
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants.
Nat Genet. 2022 Dec;54(12):1803-1815. doi: 10.1038/s41588-022-01233-6. Epub 2022 Dec 6.
7
Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis.
Nat Genet. 2022 Nov;54(11):1640-1651. doi: 10.1038/s41588-022-01213-w. Epub 2022 Nov 4.
8
Ensembl 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D933-D941. doi: 10.1093/nar/gkac958.
10
Genetic interactions drive heterogeneity in causal variant effect sizes for gene expression and complex traits.
Am J Hum Genet. 2022 Jul 7;109(7):1286-1297. doi: 10.1016/j.ajhg.2022.05.014. Epub 2022 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验