Suppr超能文献

一种用于预测前列腺特异性抗原(PSA)水平在4-20 ng/mL的患者患前列腺癌的、带有凝血标志物的列线图。

A nomogram with coagulation markers for prostate cancer prediction in patients with PSA levels of 4-20 ng/mL.

作者信息

Liu Feifan, Wang Jianyu, Song Yufeng, Wu Fei, Wu Haihu, Lyu Jiaju, Ning Hao

机构信息

Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, P.R. China.

Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China.

出版信息

Future Oncol. 2025 Feb;21(4):463-471. doi: 10.1080/14796694.2024.2445499. Epub 2024 Dec 23.

Abstract

BACKGROUND

The global incidence of prostate cancer (PCa) is rising, necessitating improved diagnostic strategies. This study explores coagulation parameters' predictive value for clinically significant PCa (csPCa) and develops a nomogram.

RESEARCH DESIGN AND METHODS

This study retrospectively analyzed data from 702 patients who underwent prostate biopsy at Shandong Provincial Hospital (SDPH) and 142 patients at Shandong Cancer Hospital and Institute (SDCHI). SDPH patients were randomly assigned at a 7:3 ratio for internal validation, while SDCHI data served as external validation. LASSO and logistic regression identified the best predictive factors for csPCa, which were used to construct a model. The model's efficacy was tested using AUC, calibration curves, and decision curve analysis.

RESULTS

TPSA, age, D-dimer, prostate volume (PV), and digital rectal examination (DRE) were identified as independent risk factors for csPCa. A predictive model was constructed using a nomogram. The AUC for the training set was 0.841, for internal validation 0.809, and for external validation 0.814. Calibration and decision curves confirmed the model's clinical utility.

CONCLUSIONS

The nomogram incorporating D-dimer, TPSA, age, PV, and DRE provides a highly accurate tool for assessing csPCa risk in individuals with PSA levels of 4-20 ng/mL, supporting personalized diagnostics and clinical decision-making.

摘要

背景

前列腺癌(PCa)的全球发病率正在上升,因此需要改进诊断策略。本研究探讨凝血参数对临床显著性前列腺癌(csPCa)的预测价值,并开发一种列线图。

研究设计与方法

本研究回顾性分析了山东省立医院(SDPH)702例接受前列腺活检患者以及山东省肿瘤医院暨山东省肿瘤防治研究院(SDCHI)142例患者的数据。SDPH患者按7:3的比例随机分配用于内部验证,而SDCHI的数据用作外部验证。LASSO和逻辑回归确定了csPCa的最佳预测因素,并用于构建模型。使用AUC、校准曲线和决策曲线分析对模型的有效性进行了测试。

结果

总前列腺特异性抗原(TPSA)、年龄、D-二聚体、前列腺体积(PV)和直肠指检(DRE)被确定为csPCa的独立危险因素。使用列线图构建了一个预测模型。训练集的AUC为0.841,内部验证为0.809,外部验证为0.814。校准曲线和决策曲线证实了该模型的临床实用性。

结论

包含D-二聚体、TPSA、年龄、PV和DRE的列线图为评估总前列腺特异性抗原水平在4-20 ng/mL的个体发生csPCa的风险提供了一种高度准确的工具,支持个性化诊断和临床决策。

相似文献

1
A nomogram with coagulation markers for prostate cancer prediction in patients with PSA levels of 4-20 ng/mL.
Future Oncol. 2025 Feb;21(4):463-471. doi: 10.1080/14796694.2024.2445499. Epub 2024 Dec 23.
3
A strategy to reduce unnecessary prostate biopsies in patients with tPSA >10 ng ml -1 and PI-RADS 1-3.
Asian J Androl. 2025 Jul 1;27(4):531-536. doi: 10.4103/aja202499. Epub 2025 Jan 28.
9
A novel nomogram for predicting osteoporosis with low back pain among the patients in Wenshan Zhuang and Miao Autonomous Prefecture of China.
Front Endocrinol (Lausanne). 2025 Jun 5;16:1535163. doi: 10.3389/fendo.2025.1535163. eCollection 2025.
10
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.

本文引用的文献

1
Periprostatic Adipose Tissue: A New Perspective for Diagnosing and Treating Prostate Cancer.
J Cancer. 2024 Jan 1;15(1):204-217. doi: 10.7150/jca.89750. eCollection 2024.
2
Based on PI-RADS v2.1 combining PHI and ADC values to guide prostate biopsy in patients with PSA 4-20 ng/mL.
Prostate. 2024 Mar;84(4):376-388. doi: 10.1002/pros.24658. Epub 2023 Dec 20.
10
Modified Prostate Health Index Density Significantly Improves Clinically Significant Prostate Cancer (csPCa) Detection.
Front Oncol. 2022 Apr 7;12:864111. doi: 10.3389/fonc.2022.864111. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验