Song Danni, Chen Beibei, Cheng Tianfan, Jin Lijian, He Jiangfeng, Li Yongming, Liao Chongshan
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
Jiangxi Provincial Key Laboratory of Oral Diseases & Jiangxi Provincial Clinical Research Center for Oral Diseases & The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
FEBS J. 2025 Apr;292(7):1726-1742. doi: 10.1111/febs.17352. Epub 2024 Dec 24.
Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21 and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.
衰老细胞的过早积累会导致组织破坏,这是糖尿病和牙周炎加速进展的潜在主要机制之一。然而,这种特征性现象是否能解释高血糖条件下的牙周发病机制仍不清楚。在本研究中,我们评估了高血糖条件下实验性牙周炎中的衰老表型变化。接下来,我们在体外和体内研究了细胞衰老中的线粒体功能和潜在的线粒体自噬途径。我们的研究结果表明,糖尿病性牙周炎小鼠的牙龈组织中发生了显著的衰老,衰老相关蛋白p21的表达增加,衰老相关分泌表型反应增强,而线粒体受体NIX样蛋白X(NIX)的表达降低。同样,我们发现线粒体功能障碍(如线粒体膜电位降低和活性氧积累)是由高血糖诱导和牙龈卟啉单胞菌脂多糖(P.g-LPS)诱导的氧化应激导致人牙周膜细胞(hPDLCs)衰老引起的。值得注意的是,使用线粒体活性氧(ROS)清除剂N-乙酰-L-半胱氨酸(NAC)可逆转由此导致的NIX表达降低,从而纠正线粒体功能障碍。我们进一步验证了小鼠牙龈组织中炎症介质和衰老相关因子的表达,并确定了可能的调控途径。综上所述,我们的研究表明细胞衰老和线粒体功能障碍在高血糖条件下的牙周发病机制中起关键作用。因此,恢复线粒体功能可能是治疗糖尿病患者牙周炎的一种潜在新方法。