Suppr超能文献

私人、公共及瓶装饮用水:共享污染物混合物暴露与影响挑战。

Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge.

作者信息

Bradley Paul M, Romanok Kristin M, Smalling Kelly L, Gordon Stephanie E, Huffman Bradley J, Paul Friedman Katie, Villeneuve Daniel L, Blackwell Brett R, Fitzpatrick Suzanne C, Focazio Michael J, Medlock-Kakaley Elizabeth, Meppelink Shannon M, Navas-Acien Ana, Nigra Anne E, Schreiner Molly L

机构信息

U.S. Geological Survey, Columbia, SC, USA.

U.S. Geological Survey, Lawrenceville, NJ, USA.

出版信息

Environ Int. 2025 Jan;195:109220. doi: 10.1016/j.envint.2024.109220. Epub 2024 Dec 19.

Abstract

BACKGROUND

Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making.

OBJECTIVES

The purpose of this paper is to provide a meta-analysis (quantitative synthesis) of POU-DW contaminant-mixture exposures and corresponding potential human-health effects of private-TW, public-TW, and BW by aggregating exposure results and harmonizing apical-health-benchmark-weighted and bioactivity-weighted effects predictions across previous studies by this research group.

DISCUSSION

Simultaneous exposures to multiple inorganic and organic contaminants of known or suspected human-health concern are common across all three DW supplies, with substantial variability observed in each and no systematic difference in predicted cumulative risk between supplies. Differences in contaminant or contaminant-class exposures, with important implications for DW-quality improvements, were observed and attributed to corresponding differences in regulation and compliance monitoring.

CONCLUSION

The results indicate that human-health risks from contaminant exposures are common to and comparable in all three DW-supplies, including BW. Importantly, this study's target analytical coverage, which exceeds that currently feasible for water purveyors or homeowners, nevertheless is a substantial underestimation of the breadth of contaminant mixtures in the environment and potentially present in DW. Thus, the results emphasize the need for improved understanding of the adverse human-health implications of long-term exposures to low-level inorganic-/organic-contaminant mixtures across all three distribution pipelines and do not support commercial messaging of BW as a systematically safer alternative to public-TW. Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment is necessary to reduce risks associated with long-term DW-contaminant exposures, especially in vulnerable populations, and to reduce environmental waste and plastics contamination.

摘要

背景

人类是全球环境污染物暴露的主要驱动因素,包括饮用水(DW)中的暴露。在美国,使用点饮用水(POU-DW)通过私人自来水(TW)、公共供应自来水和瓶装水(BW)提供。管理、监测和信息传递方面的差异以及缺乏直接可比的暴露数据影响了不同饮用水供应的实际和感知质量与安全性,并直接影响消费者决策。

目标

本文的目的是通过汇总暴露结果并协调本研究小组以往研究中基于顶端健康基准加权和生物活性加权的效应预测,对私人自来水、公共自来水和瓶装水中的POU-DW污染物混合物暴露及其相应的潜在人类健康影响进行荟萃分析(定量综合)。

讨论

在所有三种饮用水供应中,同时暴露于多种已知或疑似对人类健康有影响的无机和有机污染物的情况很常见,每种供应中都观察到了很大的变异性,且各供应之间预测的累积风险没有系统性差异。观察到了污染物或污染物类别暴露的差异,这对改善饮用水质量具有重要意义,并归因于监管和合规监测方面的相应差异。

结论

结果表明,所有三种饮用水供应(包括瓶装水)中,污染物暴露带来的人类健康风险普遍存在且具有可比性。重要的是,本研究的目标分析范围虽然超过了目前供水商或房主可行的范围,但仍然大大低估了环境中以及可能存在于饮用水中的污染物混合物的广度。因此,结果强调需要更好地了解长期暴露于所有三种配送管道中的低水平无机/有机污染物混合物对人类健康的不利影响,并且不支持将瓶装水作为公共自来水的系统性更安全替代品的商业宣传。无论供应方式如何,都需要公众更多地参与水源保护和饮用水处理,以降低与长期饮用水污染物暴露相关的风险,特别是在弱势群体中,并减少环境废物和塑料污染。

相似文献

1
Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge.
Environ Int. 2025 Jan;195:109220. doi: 10.1016/j.envint.2024.109220. Epub 2024 Dec 19.
2
Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA.
Environ Int. 2021 Jul;152:106487. doi: 10.1016/j.envint.2021.106487. Epub 2021 Mar 19.
3
Bottled water contaminant exposures and potential human effects.
Environ Int. 2023 Jan;171:107701. doi: 10.1016/j.envint.2022.107701. Epub 2022 Dec 15.
4
Tapwater exposures, residential risk, and mitigation in a PFAS-impacted-groundwater community.
Environ Sci Process Impacts. 2025 May 21;27(5):1368-1388. doi: 10.1039/d5em00005j.
5
Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA.
Sci Total Environ. 2021 Sep 20;788:147721. doi: 10.1016/j.scitotenv.2021.147721. Epub 2021 May 18.
6
Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA.
Sci Total Environ. 2020 Jun 1;719:137236. doi: 10.1016/j.scitotenv.2020.137236. Epub 2020 Feb 11.
7
Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa.
Sci Total Environ. 2023 Apr 10;868:161672. doi: 10.1016/j.scitotenv.2023.161672. Epub 2023 Jan 16.
8
9
Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations.
ACS ES T Water. 2022 Oct 14;2(10):1772-1788. doi: 10.1021/acsestwater.2c00293. Epub 2022 Sep 26.

引用本文的文献

1
Emerging Contaminants in Source and Finished Drinking Waters Across Minnesota (U.S.) and Potential Health Implications.
Int J Environ Res Public Health. 2025 Jun 20;22(7):976. doi: 10.3390/ijerph22070976.

本文引用的文献

1
Prioritization and Risk Ranking of Regulated and Unregulated Chemicals in US Drinking Water.
Environ Sci Technol. 2024 Apr 23;58(16):6878-6889. doi: 10.1021/acs.est.3c08745. Epub 2024 Apr 2.
2
Chemicals Used in Plastic Materials: An Estimate of the Attributable Disease Burden and Costs in the United States.
J Endocr Soc. 2024 Jan 11;8(2):bvad163. doi: 10.1210/jendso/bvad163. eCollection 2024 Jan 5.
3
Rapid single-particle chemical imaging of nanoplastics by SRS microscopy.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2300582121. doi: 10.1073/pnas.2300582121. Epub 2024 Jan 8.
4
Modeled De Facto Reuse and Contaminants of Emerging Concern in Drinking Water Source Waters.
J Am Water Works Assoc. 2018 Apr;110(4):E2-E18. doi: 10.1002/awwa.1052. Epub 2018 Apr 9.
5
A Systematic Review of the Placental Translocation of Micro- and Nanoplastics.
Curr Environ Health Rep. 2023 Jun;10(2):99-111. doi: 10.1007/s40572-023-00391-x. Epub 2023 Feb 27.
6
Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa.
Sci Total Environ. 2023 Apr 10;868:161672. doi: 10.1016/j.scitotenv.2023.161672. Epub 2023 Jan 16.
7
Bottled water contaminant exposures and potential human effects.
Environ Int. 2023 Jan;171:107701. doi: 10.1016/j.envint.2022.107701. Epub 2022 Dec 15.
8
Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations.
ACS ES T Water. 2022 Oct 14;2(10):1772-1788. doi: 10.1021/acsestwater.2c00293. Epub 2022 Sep 26.
9
Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS).
Environ Sci Technol. 2022 Aug 16;56(16):11172-11179. doi: 10.1021/acs.est.2c02765. Epub 2022 Aug 2.
10
Advances in computational methods along the exposure to toxicological response paradigm.
Toxicol Appl Pharmacol. 2022 Sep 1;450:116141. doi: 10.1016/j.taap.2022.116141. Epub 2022 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验