Suppr超能文献

细菌的Shedu免疫核酸酶具有一个由不同传感结构域调控的共同酶核心。

Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.

作者信息

Gu Yajie, Li Huan, Deep Amar, Enustun Eray, Zhang Dapeng, Corbett Kevin D

机构信息

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.

Department of Biology, Saint Louis University, Saint Louis, MO, USA.

出版信息

Mol Cell. 2025 Feb 6;85(3):523-536.e6. doi: 10.1016/j.molcel.2024.12.004. Epub 2024 Dec 31.

Abstract

Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD). We find that B. cereus Shedu cleaves near DNA ends with a 3' single-stranded overhang, likely enabling it to specifically degrade the DNA injected by certain bacteriophages. Bioinformatic analysis of Shedu homologs reveals a conserved nuclease domain with remarkably diverse N-terminal regulatory domains: we identify 79 distinct NTD types falling into eight broad classes, including those with predicted nucleic acid binding, enzymatic, and other activities. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse NTDs that likely respond to a range of signals.

摘要

原核生物拥有多种抗噬菌体免疫系统,包括单蛋白Shedu核酸酶。在此,我们揭示了蜡样芽孢杆菌Shedu激活的结构基础。Shedu的两个冷冻电子显微镜结构表明,它通过影响活性位点结构的构象变化在无活性状态和活性状态之间切换,这些变化由蛋白质的N端结构域(NTD)控制。我们发现蜡样芽孢杆菌Shedu在具有3'单链突出端的DNA末端附近切割,这可能使其能够特异性降解某些噬菌体注入的DNA。对Shedu同源物的生物信息学分析揭示了一个保守的核酸酶结构域,其N端调节结构域具有显著的多样性:我们确定了79种不同的NTD类型,分为八大类,包括具有预测的核酸结合、酶活性和其他活性的类型。总之,这些数据揭示Shedu是一类广泛的免疫核酸酶家族,具有由多种NTD调节的共同核酸酶核心,这些NTD可能对一系列信号作出反应。

相似文献

1
Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.
Mol Cell. 2025 Feb 6;85(3):523-536.e6. doi: 10.1016/j.molcel.2024.12.004. Epub 2024 Dec 31.
2
Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.
bioRxiv. 2023 Aug 10:2023.08.10.552793. doi: 10.1101/2023.08.10.552793.
3
DNA end sensing and cleavage by the Shedu anti-phage defense system.
Cell. 2025 Feb 6;188(3):721-733.e17. doi: 10.1016/j.cell.2024.11.030. Epub 2024 Dec 31.
8
Crystal structure of the nuclease and capping domain of SbcD from Staphylococcus aureus.
J Microbiol. 2021 Jun;59(6):584-589. doi: 10.1007/s12275-021-1012-0. Epub 2021 Apr 20.
9
CerR, a Single-Domain Regulatory Protein of the LuxR Family, Promotes Cerecidin Production and Immunity in Bacillus cereus.
Appl Environ Microbiol. 2018 Feb 14;84(5). doi: 10.1128/AEM.02245-17. Print 2018 Mar 1.
10
Structures and single-molecule analysis of bacterial motor nuclease AdnAB illuminate the mechanism of DNA double-strand break resection.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24507-24516. doi: 10.1073/pnas.1913546116. Epub 2019 Nov 18.

引用本文的文献

1
Gabija restricts phages that antagonize a conserved host DNA repair complex.
bioRxiv. 2025 Aug 30:2025.08.30.673261. doi: 10.1101/2025.08.30.673261.
2
Defence systems encoded by core genomic islands of seventh pandemic .
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240083. doi: 10.1098/rstb.2024.0083.
4
Unveiling the multifaceted domain polymorphism of the Menshen antiphage system.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf357.
5
Bacterial Hachiman complex executes DNA cleavage for antiphage defense.
Nat Commun. 2025 Mar 17;16(1):2604. doi: 10.1038/s41467-025-57851-1.

本文引用的文献

1
DNA end sensing and cleavage by the Shedu anti-phage defense system.
Cell. 2025 Feb 6;188(3):721-733.e17. doi: 10.1016/j.cell.2024.11.030. Epub 2024 Dec 31.
2
Conservation of antiviral systems across domains of life reveals immune genes in humans.
Cell Host Microbe. 2024 Sep 11;32(9):1594-1607.e5. doi: 10.1016/j.chom.2024.08.002. Epub 2024 Aug 28.
3
A conserved family of immune effectors cleaves cellular ATP upon viral infection.
Cell. 2023 Aug 17;186(17):3619-3631.e13. doi: 10.1016/j.cell.2023.07.020.
5
An E1-E2 fusion protein primes antiviral immune signalling in bacteria.
Nature. 2023 Apr;616(7956):319-325. doi: 10.1038/s41586-022-05647-4. Epub 2023 Feb 8.
6
A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome.
Nat Microbiol. 2022 Oct;7(10):1568-1579. doi: 10.1038/s41564-022-01219-4. Epub 2022 Sep 19.
7
Bacteria deplete deoxynucleotides to defend against bacteriophage infection.
Nat Microbiol. 2022 Aug;7(8):1200-1209. doi: 10.1038/s41564-022-01158-0. Epub 2022 Jul 11.
8
Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria.
Nat Microbiol. 2022 Aug;7(8):1210-1220. doi: 10.1038/s41564-022-01162-4. Epub 2022 Jul 11.
9
PADLOC: a web server for the identification of antiviral defence systems in microbial genomes.
Nucleic Acids Res. 2022 Jul 5;50(W1):W541-W550. doi: 10.1093/nar/gkac400.
10
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验