Wu Bo, Lu Ruihu, Wu Chao, Yuan Tenghui, Liu Bin, Wang Xi, Fang Chenyi, Mi Ziyu, Bin Dolmanan Surani, Tjiu Weng Weei, Zhang Mingsheng, Wang Bingqing, Aabdin Zainul, Zhang Sui, Hou Yi, Zhao Bote, Xi Shibo, Leow Wan Ru, Wang Ziyun, Lum Yanwei
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
Nat Commun. 2025 Jan 2;16(1):166. doi: 10.1038/s41467-024-55283-x.
Employing electrochemistry for the selective functionalization of liquid alkanes allows for sustainable and efficient production of high-value chemicals. However, the large potentials required for C(sp)-H bond functionalization and low water solubility of such alkanes make it challenging. Here we discover that a Pt/IrO electrocatalyst with optimized Cl binding energy enables selective generation of Cl free radicals for C-H chlorination of alkanes. For instance, we achieve monochlorination of cyclohexane with a current up to 5 A, Faradaic efficiency (FE) up to 95% and stable performance over 100 h in aqueous KCl electrolyte. We further demonstrate that our system can directly utilize concentrated seawater derived from a solar evaporation reverse osmosis process, achieving a FE of 93.8% towards chlorocyclohexane at a current of 1 A. By coupling to a photovoltaic module, we showcase solar-driven production of chlorocyclohexane using concentrated seawater in a membrane electrode assembly cell without any external bias. Our findings constitute a sustainable pathway towards renewable energy driven chemicals manufacture using abundant feedstock at industrially relevant rates.
利用电化学实现液态烷烃的选择性官能团化能够可持续且高效地生产高价值化学品。然而,C(sp)-H键官能团化所需的高电位以及此类烷烃的低水溶性使其颇具挑战性。在此,我们发现具有优化的Cl结合能的Pt/IrO电催化剂能够选择性地生成用于烷烃C-H氯化的Cl自由基。例如,我们在KCl水溶液电解质中实现了环己烷的单氯化,电流高达5 A,法拉第效率(FE)高达95%,且在100小时内性能稳定。我们进一步证明,我们的系统可以直接利用太阳能蒸发反渗透过程产生的浓缩海水,在1 A电流下对氯环己烷的法拉第效率达到93.8%。通过与光伏模块耦合,我们展示了在膜电极组装电池中使用浓缩海水在无任何外部偏压的情况下太阳能驱动生产氯环己烷。我们的发现构成了一条可持续的途径,可利用丰富的原料以工业相关速率实现可再生能源驱动的化学品制造。