Tong Tian, Chen Xiulai, Tang Kexin, Ma Wanrong, Gao Cong, Song Wei, Wu Jing, Wang Xiaoling, Liu Gao-Qiang, Liu Liming
Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China.
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
Nat Commun. 2025 Jan 2;16(1):145. doi: 10.1038/s41467-024-55498-y.
Photosynthesis harvests solar energy to convert CO into chemicals, offering a potential solution to reduce atmospheric CO. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E. coli, by integrating light and dark reaction to synthesize bioproducts from one-carbon substrates. A light reaction is reconstructed using the photosystem of photosynthetic bacteria, increasing ATP and NADH contents by 337.9% and 383.7%, respectively. A dark reaction is constructed by designing CO fixation pathway to synthesize pyruvate. By assembling the light and dark reaction, a photosynthesis system is established and further programmed by installing an energy adapter, enabling the production of acetone, malate, and α-ketoglutarate, with a negative carbon footprint of -0.84 ~ -0.23 kgCOe/kg product. Furthermore, light-driven one-carbon trophic growth of E. coli is achieved with a doubling time of 19.86 h. This photosynthesis system provides a green and sustainable approach to enhance one-carbon substrates utilization in the future.
光合作用捕获太阳能以将一氧化碳转化为化学物质,为减少大气中的一氧化碳提供了一种潜在的解决方案。然而,将光合作用整合到非光合微生物中以利用一碳底物具有挑战性。在此,通过整合光反应和暗反应,在大肠杆菌中重建了一个光合作用系统,用于从一碳底物合成生物产品。利用光合细菌的光系统重建光反应,使三磷酸腺苷(ATP)和还原型辅酶Ⅰ(NADH)的含量分别增加了337.9%和383.7%。通过设计一氧化碳固定途径来合成丙酮酸,构建了暗反应。通过组装光反应和暗反应,建立了一个光合作用系统,并通过安装一个能量适配器进一步进行编程,从而能够生产丙酮、苹果酸和α-酮戊二酸,其负碳足迹为-0.84 ~ -0.23千克二氧化碳当量/千克产品。此外,实现了大肠杆菌的光驱动一碳营养生长,其倍增时间为19.86小时。这个光合作用系统为未来提高一碳底物的利用提供了一种绿色且可持续的方法。