Suppr超能文献

皮肤微生物群与生物衰老之间的遗传因果关联:来自孟德尔随机化分析的证据。

Genetic Causal Association Between Skin Microbiota and Biological Aging: Evidence From a Mendelian Randomization Analysis.

作者信息

Li Yuan, Ma Liwen, Fan Lipan, Wu Chuyan, Luo Dan, Jiang Feng

机构信息

Department of Dermatology, The Fifth People's Hospital of Hainan Province, Haikou, China.

Department of Dermatology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.

出版信息

J Cosmet Dermatol. 2025 Jan;24(1):e16762. doi: 10.1111/jocd.16762.

Abstract

BACKGROUND

The skin microbiota, a complex community of microorganisms residing on the skin, plays a crucial role in maintaining skin health and overall homeostasis. Recent research has suggested that alterations in the composition and function of the skin microbiota may influence the aging process. However, the causal relationships between specific skin microbiota and biological aging remain unclear. Mendelian randomization (MR) analysis provides a powerful tool to explore these causal links by utilizing genetic variants as instrumental variables, thereby minimizing confounding factors and reverse causality that often complicate observational studies.

METHODS

We utilized a two-sample MR approach with population-based cross-sectional data from two German cohorts, KORA FF4 (n = 324) and PopGen (n = 273). In total, GWAS summary data from 1656 skin samples and datasets on accelerated biological age were analyzed to investigate the causal relationship between skin microbiota and accelerated biological aging. The primary analysis was performed using the inverse variance weighted (IVW) method with random effects and was further supported by MR-Egger regression, Cochran's Q test, and a range of sensitivity analyses.

RESULTS

The MR analysis revealed that for biological age acceleration (BioageAccel), the IVW analysis identified protective effects from certain skin microbiota, including Alphaproteobacteria_Dry (p = 0.046), Asv033_sebaceous (p = 0.043), Burkholderiales_Moist (p = 0.008), and Proteobacteria_Moist (p = 0.042). Similar protective effects were observed for Burkholderiales_Moist (p = 0.045) and Proteobacteria_Moist (p = 0.012) in the weighted median analysis. In contrast, Paracoccus_Moist (p = 0.013) and Proteobacteria_Sebaceous (p = 0.005) were associated with accelerated aging. When using PhenoAge acceleration as the outcome, the IVW analysis linked skin microbiota like Asv005_Dry (p = 0.026), ASV039_Dry (p = 0.003), Betaproteobacteria_Sebaceous (p = 0.038), and Chryseobacterium_Moist (p = 0.013) with accelerated aging. The weighted median analysis supported these findings and also identified protective effects from ASV011_Dry (p = 0.021), ASV023_Dry (p = 0.040), Bacteroidales_Dry (p = 0.022), Enhydrobacter_Moist (p = 0.038), Proteobacteria_Moist (p = 0.002), and Rothia_Moist (p = 0.038).

CONCLUSIONS

This two-sample MR study reveals potential causal relationships between skin microbiota and aging. However, to confirm these findings, further randomized controlled trials (RCTs) are necessary.

摘要

背景

皮肤微生物群是存在于皮肤上的复杂微生物群落,在维持皮肤健康和整体内环境稳定方面起着至关重要的作用。最近的研究表明,皮肤微生物群的组成和功能变化可能会影响衰老过程。然而,特定皮肤微生物群与生物衰老之间的因果关系仍不清楚。孟德尔随机化(MR)分析提供了一个强大的工具,通过利用基因变异作为工具变量来探索这些因果联系,从而最大限度地减少常常使观察性研究复杂化的混杂因素和反向因果关系。

方法

我们采用两样本MR方法,使用来自两个德国队列KORA FF4(n = 324)和PopGen(n = 273)的基于人群的横断面数据。总共分析了来自1656个皮肤样本的全基因组关联研究(GWAS)汇总数据和加速生物年龄的数据集,以研究皮肤微生物群与加速生物衰老之间的因果关系。主要分析使用具有随机效应的逆方差加权(IVW)方法进行,并得到MR-Egger回归、 Cochr an Q检验和一系列敏感性分析的进一步支持。

结果

MR分析显示,对于生物年龄加速(BioageAccel),IVW分析确定了某些皮肤微生物群的保护作用,包括变形菌门_干燥菌属(p = 0.046)、Asv033_皮脂腺菌属(p = 0.043)、伯克霍尔德菌目_潮湿菌属(p = 0.008)和变形菌门_潮湿菌属(p = 0.042)。在加权中位数分析中,伯克霍尔德菌目_潮湿菌属(p = 0.045)和变形菌门_潮湿菌属(p = 0.012)也观察到类似的保护作用。相比之下,潮湿副球菌属(p = 0.013)和皮脂腺变形菌属(p = 0.005)与加速衰老有关。当使用PhenoAge加速作为结果时,IVW分析将如Asv005_干燥菌属(p = 0.026)、ASV039_干燥菌属(p = 0.003)、β-变形菌门_皮脂腺菌属(p = 0.038)和金黄杆菌属_潮湿菌属(p = 0.013)等皮肤微生物群与加速衰老联系起来。加权中位数分析支持了这些发现,还确定了Asv011_干燥菌属(p = 0.021)、ASV023_干燥菌属(p = 0.040)、拟杆菌目_干燥菌属(p = 0.022)、嗜水生菌属_潮湿菌属(p = 0.038)、变形菌门_潮湿菌属(p = 0.002)和露西氏菌属_潮湿菌属(p = 0.038)的保护作用。

结论

这项两样本MR研究揭示了皮肤微生物群与衰老之间潜在的因果关系。然而,为了证实这些发现,有必要进行进一步的随机对照试验(RCT)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74ad/11699445/490f0374ad11/JOCD-24-e16762-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验