Bahado-Singh Ray, Ashrafi Nadia, Ibrahim Amin, Aydas Buket, Yilmaz Ali, Friedman Perry, Graham Stewart F, Turkoglu Onur
Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Oakland University William Beaumont School of Medicine, Royal Oak, MI, 48073, USA.
Metabolomics Department, Corewell Health William Beaumont University Hospital, Beaumont Research Institute, Royal Oak, MI, 48073, USA.
Sci Rep. 2025 Jan 15;15(1):2060. doi: 10.1038/s41598-025-85216-7.
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detection of cyanotic CHD (CCHD) can have disastrous consequences. We therefore sought to use a Precision Fetal Cardiology based approach combining metabolomic profiling of maternal saliva and machine learning, a major branch of artificial intelligence (AI), for the prenatal detection of isolated, non-syndromic cyanotic CHD. Metabolomic analyses using Ultra-High Performance Liquid Chromatography/Mass Spectrometry identified 468 metabolites in the saliva. Six different AI platforms were utilized for the detection of CCHD and CHD overall. AI achieved excellent accuracy for the CCHD detection: Area Under the ROC curve: AUC (95% CI) = 0.819 (0.635-1.00) with a sensitivity and specificity of 92.5% and 87.0%, and for CHD overall: AUC (95% CI) = 0.828 (0.635-1.00) with a sensitivity of 90.5% and specificity of 88.0%. Similarly high accuracies were achieved for the detection of CHD overall: AUC (95% CI) = 0.8488 (0.635-1.00) with a sensitivity of 92.5% and specificity of 91.0%. Pathway analysis showed significant alterations in Arachidonic Acid, Alpha-linoleic acid, and Tryptophan metabolism indicating significant lipid dysfunction in cyanotic CHD. In summary, we report for the first time, the accurate detection of non-syndromic cyanotic CHD using maternal salivary metabolomics. Further, analysis revealed significant alteration of lipid metabolism.
先天性心脏病(CHD)的产前超声诊断可改善发病率和死亡率。然而,作为唯一的产前筛查工具,超声的诊断准确性仍然有限。产前或新生儿早期未能检测出青紫型先天性心脏病(CCHD)可能会带来灾难性后果。因此,我们试图采用基于精准胎儿心脏病学的方法,将母体唾液代谢组学分析与机器学习(人工智能的一个主要分支)相结合,用于产前检测孤立的、非综合征性青紫型先天性心脏病。使用超高效液相色谱/质谱进行的代谢组学分析在唾液中鉴定出468种代谢物。六个不同的人工智能平台被用于总体检测CCHD和CHD。人工智能在检测CCHD方面具有出色的准确性:ROC曲线下面积:AUC(95%CI)=0.819(0.635-1.00),灵敏度和特异性分别为92.5%和87.0%;总体检测CHD时:AUC(95%CI)=0.828(0.635-1.00),灵敏度为90.5%,特异性为88.0%。总体检测CHD时也获得了类似的高准确率:AUC(95%CI)=0.8488(0.635-1.00),灵敏度为92.5%,特异性为91.0%。通路分析显示花生四烯酸、α-亚麻酸和色氨酸代谢存在显著改变,表明青紫型先天性心脏病存在明显的脂质功能障碍。总之,我们首次报告了使用母体唾液代谢组学准确检测非综合征性青紫型先天性心脏病。此外,分析还揭示了脂质代谢的显著改变。