Marchand Anthony, Buckley Stephen, Schneuing Arne, Pacesa Martin, Elia Maddalena, Gainza Pablo, Elizarova Evgenia, Neeser Rebecca M, Lee Pao-Wan, Reymond Luc, Miao Yangyang, Scheller Leo, Georgeon Sandrine, Schmidt Joseph, Schwaller Philippe, Maerkl Sebastian J, Bronstein Michael, Correia Bruno E
Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Monte Rosa Therapeutics, Boston, MA, USA.
Nature. 2025 Mar;639(8054):522-531. doi: 10.1038/s41586-024-08435-4. Epub 2025 Jan 15.
Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field. Here we present a computational strategy for the design of proteins that target neosurfaces, that is, surfaces arising from protein-ligand complexes. To develop this strategy, we leveraged a geometric deep learning approach based on learned molecular surface representations and experimentally validated binders against three drug-bound protein complexes: Bcl2-venetoclax, DB3-progesterone and PDF1-actinonin. All binders demonstrated high affinities and accurate specificities, as assessed by mutational and structural characterization. Remarkably, surface fingerprints previously trained only on proteins could be applied to neosurfaces induced by interactions with small molecules, providing a powerful demonstration of generalizability that is uncommon in other deep learning approaches. We anticipate that such designed chemically induced protein interactions will have the potential to expand the sensing repertoire and the assembly of new synthetic pathways in engineered cells for innovative drug-controlled cell-based therapies.
蛋白质之间的分子识别事件驱动着生命系统中的生物过程。然而,已经出现了更高层次的机制调控,其中蛋白质-蛋白质相互作用受小分子制约。尽管最近取得了进展,但设计新的化学诱导蛋白质相互作用的计算工具仍然是该领域一项具有挑战性的任务。在此,我们提出一种针对新表面(即由蛋白质-配体复合物产生的表面)设计蛋白质的计算策略。为了开发这种策略,我们利用了一种基于学习到的分子表面表示的几何深度学习方法,并通过实验验证了针对三种药物结合蛋白复合物的结合剂:Bcl2-维奈托克、DB3-孕酮和PDF1-放线菌素。通过突变和结构表征评估,所有结合剂均表现出高亲和力和准确的特异性。值得注意的是,先前仅在蛋白质上训练的表面指纹可应用于由与小分子相互作用诱导产生的新表面,这有力地证明了通用性,而这在其他深度学习方法中并不常见。我们预计,这种设计的化学诱导蛋白质相互作用将有可能扩展传感功能,并在工程细胞中组装新的合成途径,用于创新的药物控制细胞疗法。