Tolun Aysu, Sharifuzzaman Md, Altintas Zeynep
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany.
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany.
Int J Biol Macromol. 2025 Apr;300:140064. doi: 10.1016/j.ijbiomac.2025.140064. Epub 2025 Jan 19.
Curcumin, a hydrophobic drug derived from the rhizome of Curcuma longa, exhibits significant bioactive properties, including antioxidant and antimicrobial potential. However, its poor water solubility and rapid degradation limit its practical applications. This study presents a novel design of electrospun nanofibers using curcumin/hydroxypropyl-β-cyclodextrin inclusion complex (HP-β-CD-IC) combined with pullulan to enhance thermal stability and controlled release. In uniaxial nanofibers, curcumin/HP-β-CD-IC is uniformly distributed, whereas in coaxial nanofibers, curcumin/HP-β-CD-IC serves as the core material, with pullulan as the wall material. X-ray diffraction and Fourier-transform infrared spectroscopy confirmed successful inclusion complex formation, with coaxial fibers showing no crystalline peaks of curcumin. Differential scanning calorimetry indicated enhanced thermal stability, with melting points shifting to 279.19 °C and 291.63 °C for uniaxial and coaxial fibers, respectively. Scanning electron microscopy and transmission electron microscopy verified the core-shell structure and uniform morphology. In vitro release studies revealed that coaxial fibers achieved higher cumulative release (93 ± 1.41 %) compared to uniaxial fibers (80 ± 2.82 %) over 350 min. Antibacterial tests demonstrated improved activity of coaxial fibers against S. aureus and E. coli. Addressing the critical need for stable and bioavailable delivery of hydrophobic bioactive compounds, this innovative coaxial nanofiber design holds great promise for revolutionizing applications in food technology and drug delivery.
姜黄素是一种从姜黄根茎中提取的疏水性药物,具有显著的生物活性,包括抗氧化和抗菌潜力。然而,其较差的水溶性和快速降解限制了其实际应用。本研究提出了一种新型的电纺纳米纤维设计,使用姜黄素/羟丙基-β-环糊精包合物(HP-β-CD-IC)与支链淀粉相结合,以提高热稳定性和控释性能。在单轴纳米纤维中,姜黄素/HP-β-CD-IC均匀分布,而在同轴纳米纤维中,姜黄素/HP-β-CD-IC作为核心材料,支链淀粉作为壁材。X射线衍射和傅里叶变换红外光谱证实成功形成了包合物,同轴纤维未显示姜黄素的结晶峰。差示扫描量热法表明热稳定性增强,单轴和同轴纤维的熔点分别移至279.19℃和291.63℃。扫描电子显微镜和透射电子显微镜验证了核壳结构和均匀的形态。体外释放研究表明,在350分钟内,同轴纤维的累积释放率(93±1.41%)高于单轴纤维(80±2.82%)。抗菌测试表明同轴纤维对金黄色葡萄球菌和大肠杆菌的活性有所提高。这种创新的同轴纳米纤维设计满足了对疏水性生物活性化合物进行稳定和生物可利用递送的迫切需求,在食品技术和药物递送应用的变革方面具有巨大潜力。