Suppr超能文献

用于单细胞数据分析的扩散拓扑保持流形距离

Diffusive topology preserving manifold distances for single-cell data analysis.

作者信息

Wei Jiangyong, Zhang Bin, Wang Qiu, Zhou Tianshou, Tian Tianhai, Chen Luonan

机构信息

Guangdong Institute of Intelligence Science and Technology, 519031 Hengqin, Zhuhai, Guangdong, China.

School of Mathematics and Statistics, Sun Yat-sen University, 510275 Guangzhou, China.

出版信息

Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2404860121. doi: 10.1073/pnas.2404860121. Epub 2025 Jan 24.

Abstract

Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics. DTNE constructs a manifold distance matrix using a modified personalized PageRank algorithm, thereby preserving topological structure while enabling diverse single-cell analyses. This approach facilitates distribution-based cellular relationship analysis, pseudotime inference, and clustering within a unified framework. Extensive benchmarking against mainstream algorithms on diverse datasets demonstrates DTNE's superior performance in maintaining geodesic distances and revealing significant biological patterns. Our results establish DTNE as a powerful tool for high-dimensional data analysis in uncovering meaningful biological insights.

摘要

流形学习技术已成为揭示高维单细胞数据中潜在模式的关键工具。然而,大多数现有的降维方法主要依赖于二维可视化,这可能会扭曲真实的数据关系,并且无法提取可靠的生物学信息。在此,我们提出了DTNE(扩散拓扑邻居嵌入),这是一种降维框架,它能忠实地近似流形距离,以增强细胞关系和动态变化。DTNE使用改进的个性化PageRank算法构建流形距离矩阵,从而在保留拓扑结构的同时实现多样的单细胞分析。这种方法有助于在统一框架内进行基于分布的细胞关系分析、伪时间推断和聚类。在不同数据集上与主流算法进行的广泛基准测试表明,DTNE在保持测地距离和揭示重要生物学模式方面具有卓越性能。我们的结果表明,DTNE是用于高维数据分析以揭示有意义生物学见解的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验