Suppr超能文献

MAI-TargetFisher:一种通过人工智能和物理建模协同增强的全蛋白质组药物靶点预测方法。

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

作者信息

Li Shi-Wei, Ren Peng-Xuan, Wang Lin, Han Qi-Lei, Li Feng-Lei, Li Hong-Lin, Bai Fang

机构信息

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

出版信息

Acta Pharmacol Sin. 2025 May;46(5):1462-1475. doi: 10.1038/s41401-024-01444-z. Epub 2025 Jan 27.

Abstract

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method. Our method aims to localize drug targets and detect potential off-target effects early in the drug discovery process, thereby improving the success rate of drug development. We have constructed a high-quality database of protein structures with annotated potential binding sites, covering 82% of the protein-coding genome. On the basis of this database, to enhance our search capabilities, we have integrated computational techniques, including both artificial intelligence-based and biophysical model-based methods. This integration led to the development of a target identification method called Multi-Algorithm Integrated Target Fisher (MAI-TargetFisher). MAI-TargetFisher leverages the complementary strengths of various methods while minimizing their weaknesses, enabling precise database navigation to generate a reliably ranked set of candidate targets for an active query molecule. Importantly, our work is the first comprehensive scan of protein surfaces across the entire human genome, aimed at evaluating potential small molecule binding sites on each protein. Through a series of evaluations on benchmark and a target identification task, the results demonstrate the high hit rates and good reliability of our method under the validation of wet experiments. We have also made available a freely accessible web server at https://bailab.siais.shanghaitech.edu.cn/mai-targetfisher for non-commercial use.

摘要

计算靶点识别在药物研发过程中起着关键作用。随着蛋白质结构预测深度学习方法的重大进展,人类蛋白质组的结构覆盖率大幅提高。这一进展推动了首个全基因组小分子靶点扫描方法的开发。我们的方法旨在在药物发现过程的早期定位药物靶点并检测潜在的脱靶效应,从而提高药物研发的成功率。我们构建了一个高质量的蛋白质结构数据库,其中标注了潜在的结合位点,覆盖了82%的蛋白质编码基因组。基于该数据库,为了增强我们的搜索能力,我们整合了计算技术,包括基于人工智能和基于生物物理模型的方法。这种整合促成了一种名为多算法集成靶点Fisher(MAI-TargetFisher)的靶点识别方法的开发。MAI-TargetFisher利用了各种方法的互补优势,同时尽量减少其弱点,能够精确地在数据库中导航,为活性查询分子生成一组可靠排序的候选靶点。重要的是,我们的工作是对整个人类基因组的蛋白质表面进行的首次全面扫描,旨在评估每个蛋白质上潜在的小分子结合位点。通过对基准数据集的一系列评估和一个靶点识别任务,结果表明我们的方法在湿实验验证下具有高命中率和良好的可靠性。我们还在https://bailab.siais.shanghaitech.edu.cn/mai-targetfisher提供了一个可免费访问的网络服务器,供非商业使用。

相似文献

1
MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.
Acta Pharmacol Sin. 2025 May;46(5):1462-1475. doi: 10.1038/s41401-024-01444-z. Epub 2025 Jan 27.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
4
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
5
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
8
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
9
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
10
Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: a network meta-analysis.
Cochrane Database Syst Rev. 2014 Mar 26;2014(3):CD010844. doi: 10.1002/14651858.CD010844.pub2.

引用本文的文献

本文引用的文献

1
Conformational Space Profiling Enhances Generic Molecular Representation for AI-Powered Ligand-Based Drug Discovery.
Adv Sci (Weinh). 2024 Oct;11(40):e2403998. doi: 10.1002/advs.202403998. Epub 2024 Aug 29.
2
CovBinderInPDB: A Structure-Based Covalent Binder Database.
J Chem Inf Model. 2022 Dec 12;62(23):6057-6068. doi: 10.1021/acs.jcim.2c01216. Epub 2022 Dec 1.
3
KEGG for taxonomy-based analysis of pathways and genomes.
Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592. doi: 10.1093/nar/gkac963.
4
Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma.
Acta Pharmacol Sin. 2023 Apr;44(4):877-887. doi: 10.1038/s41401-022-00999-z. Epub 2022 Oct 7.
5
CavitySpace: A Database of Potential Ligand Binding Sites in the Human Proteome.
Biomolecules. 2022 Jul 11;12(7):967. doi: 10.3390/biom12070967.
6
AlphaFold2: A Role for Disordered Protein/Region Prediction?
Int J Mol Sci. 2022 Apr 21;23(9):4591. doi: 10.3390/ijms23094591.
7
The structural coverage of the human proteome before and after AlphaFold.
PLoS Comput Biol. 2022 Jan 24;18(1):e1009818. doi: 10.1371/journal.pcbi.1009818. eCollection 2022 Jan.
9
Challenging Reverse Screening: A Benchmark Study for Comprehensive Evaluation.
Mol Inform. 2022 Apr;41(4):e2100063. doi: 10.1002/minf.202100063. Epub 2021 Nov 17.
10
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验