Suppr超能文献

生物物理引导的不确定性感知深度学习揭示了高亲和力的塑料结合肽。

Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides.

作者信息

Alshehri Abdulelah S, Bergman Michael T, You Fengqi, Hall Carol K

机构信息

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14853 USA.

Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia.

出版信息

Digit Discov. 2025 Jan 24;4(2):561-571. doi: 10.1039/d4dd00219a. eCollection 2025 Feb 12.

Abstract

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods. One step towards addressing this issue is to train deep learning models on experimental or biophysical datasets, permitting faster and cheaper evaluations of peptides. However, deep learning predictions are not always accurate, which could waste time and money due to synthesizing and evaluating false positives. Here, we resolve this issue by combining biophysical modeling data from Peptide Binder Design (PepBD) algorithm, the predictive power and uncertainty quantification of evidential deep learning, and metaheuristic search methods to identify high-affinity PBPs for several common plastics. Molecular dynamics simulations show that the discovered PBPs have greater median adsorption free energies for polyethylene (5%), polypropylene (18%), and polystyrene (34%) relative to PBPs previously designed by PepBD. The impact of including uncertainty quantification in peptide design is demonstrated by the increasing improvement in the median adsorption free energy with decreasing uncertainty. This robust framework accelerates peptide discovery, paving the way for effective, bio-inspired solutions to MP remediation.

摘要

塑料污染,尤其是微塑料(MPs),对生态系统和人类健康构成了重大的全球威胁,因此需要创新的修复策略。生物相容性和可生物降解的塑料结合肽(PBPs)通过靶向吸附以及随后对微塑料的检测或从环境中去除提供了一种潜在的解决方案。发现塑料结合肽的一个挑战是可能的肽的巨大组合空间(例如,12肽的组合超过10种),这远远超过了通常通过实验或基于生物物理学的计算方法所能达到的样本量。解决这个问题的一个步骤是在实验或生物物理数据集上训练深度学习模型,从而能够更快、更廉价地评估肽。然而,深度学习预测并不总是准确的,由于合成和评估假阳性可能会浪费时间和金钱。在这里,我们通过结合来自肽结合剂设计(PepBD)算法的生物物理建模数据、证据深度学习的预测能力和不确定性量化以及元启发式搜索方法来解决这个问题,以识别几种常见塑料的高亲和力PBPs。分子动力学模拟表明,相对于之前由PepBD设计的PBPs,发现的PBPs对聚乙烯(5%)、聚丙烯(18%)和聚苯乙烯(34%)具有更大的中位吸附自由能。随着不确定性的降低,中位吸附自由能的不断提高证明了在肽设计中纳入不确定性量化的影响。这个强大的框架加速了肽的发现,为微塑料修复的有效、受生物启发的解决方案铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验