Topkiran Ugur C, Valimukhametova Alina R, Vashani Diya, Paul Himish, Dorsky Abby, Sottile Olivia, Johnson Dustin A, Burnett William, Coffer Jeffery L, Akkaraju Giridhar R, Naumov Anton V
Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX, 76129, USA.
Department of Chemistry and Biochemistry, Texas Christian University, TCU Box 298840, Fort Worth, TX, 76129, USA.
Small. 2025 Mar;21(9):e2406095. doi: 10.1002/smll.202406095. Epub 2025 Feb 2.
Graphene quantum dots (GQDs) have gained popularity in nano-biotechnology due to their multifunctional delivery and imaging capabilities. The outcome of their therapeutic delivery applications relies on understanding cell internalization routes. Current literature presents often conflicting results based on surveying only a few endocytosis inhibitors. Herein, a holistic approach to cell uptake studies by utilizing six different inhibitors while considering their on- and off-target effects on internalization of the GQDs of different charges is provided. Endocytosis paths are explored by tracking intracellular GQD fluorescence in HeLa or HEK-293 cells. Contrary to the previous assumptions of a singular entry route, findings suggest that GQDs enter the cells through several endocytosis paths with some more prevalent than others. Selectivity between the pathways is based on GQD charge and functional groups. Positively charged nitrogen-doped GQDs (NGQDs) predominantly utilize a fast endophilin-mediated endocytosis (FEME) in HeLa cells with a secondary preference for clathrin-mediated endocytosis (CME). In HEK-293 cells NGQDs internalize via clathrin-independent, glycosylphosphatidylinositol-anchored protein-enriched compartments (CLIC/GEEC) and FEME. Conversely, GQDs with a substantial negative surface charge uptake through CME in HeLa cells. The optimization of these mechanisms can enhance GQD applications in biomedicine, ideally streamlining their translation into the clinic.
石墨烯量子点(GQDs)因其多功能递送和成像能力而在纳米生物技术领域受到广泛关注。其治疗性递送应用的效果取决于对细胞内化途径的了解。目前的文献基于仅对几种内吞作用抑制剂的研究,往往呈现出相互矛盾的结果。本文提供了一种全面的细胞摄取研究方法,利用六种不同的抑制剂,同时考虑它们对不同电荷的GQDs内化的靶向和非靶向效应。通过追踪HeLa或HEK - 293细胞内的GQD荧光来探索内吞作用途径。与之前关于单一进入途径的假设相反,研究结果表明GQDs通过多种内吞作用途径进入细胞,其中一些途径比其他途径更普遍。途径之间的选择性基于GQD的电荷和官能团。带正电荷的氮掺杂GQDs(NGQDs)在HeLa细胞中主要通过快速的发动蛋白介导的内吞作用(FEME)进入细胞,其次偏好网格蛋白介导的内吞作用(CME)。在HEK - 293细胞中,NGQDs通过不依赖网格蛋白、富含糖基磷脂酰肌醇锚定蛋白的区室(CLIC/GEEC)和FEME内化。相反,具有大量负表面电荷的GQDs在HeLa细胞中通过CME摄取。优化这些机制可以增强GQDs在生物医学中的应用,理想情况下可简化其向临床的转化。