Shahab Muhammad, Waqas Muhammad, Fahira Aamir, Sharma Bharat Prasad, Zhang Haoke, Zheng Guojun, Huang Zunnan
Dongguan Key Laboratory of Computer-Aided Drug Design, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
Guangdong Medical University Key Laboratory of Big Data Mining and Precision Drug Design, Guangdong Provincial Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
Mol Divers. 2025 Feb 3. doi: 10.1007/s11030-025-11119-4.
Cancer remains one of the leading causes of death worldwide, with the rising incidence of breast cancer being a significant public health concern. Poly (ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising therapeutic target for breast cancer treatment due to its crucial role in DNA repair. This study aimed to discover novel, targeted, and non-toxic PARP-1 inhibitors using an integrated approach that combines machine learning-based screening, molecular docking simulations, and quantum mechanical calculations. We trained a widely used machine learning models, Random Forest, using bioactivity data from known PARP-1 inhibitors. After evaluating the performance, it was used to screen an FDA-approved drug library, successfully identifying Atazanavir, Brexpiprazole, Raltegravir, and Nisoldipine as potential PARP-1 inhibitors. These compounds were further validated through molecular docking and all-atom molecular dynamics simulations, highlighting their potential for breast cancer therapy. The binding free energies indicated that Atazanavir at - 41.86 kJ/mol and Brexpiprazole at - 45.44 kJ/mol exhibited superior binding affinity compared to the control drug at - 30.42 kJ/mol, highlighting their promise as candidates for breast cancer therapy. Subsequent optimized geometries and electron density mappings of the two molecular structures revealed a Gibbs free energy of - 2334.610 Ha for the first molecule and - 1682.278316 Ha for the second, confirming enhanced stability compared to the standard drug. This study not only highlights the efficacy of machine learning in drug discovery but also underscores the importance of quantum mechanics in validating molecular stability, setting a robust foundation for future pharmacological explorations. Additionally, this approach could revolutionize the drug repurposing process by significantly reducing the time and cost associated with traditional drug development methods. Our results establish a promising basis for subsequent research aimed at optimizing these PARP-1 inhibitors for clinical use, potentially offering more effective treatment options for breast cancer patients.
癌症仍然是全球主要死因之一,乳腺癌发病率的上升是一个重大的公共卫生问题。聚(ADP - 核糖)聚合酶 - 1(PARP - 1)因其在DNA修复中的关键作用,已成为乳腺癌治疗中一个有前景的治疗靶点。本研究旨在使用一种综合方法发现新型、靶向且无毒的PARP - 1抑制剂,该方法结合了基于机器学习的筛选、分子对接模拟和量子力学计算。我们使用来自已知PARP - 1抑制剂的生物活性数据训练了一个广泛使用的机器学习模型——随机森林。在评估其性能后,将其用于筛选美国食品药品监督管理局(FDA)批准的药物库,成功鉴定出阿扎那韦、布雷哌唑、拉替拉韦和尼索地平为潜在的PARP - 1抑制剂。通过分子对接和全原子分子动力学模拟对这些化合物进行了进一步验证,突出了它们在乳腺癌治疗中的潜力。结合自由能表明,阿扎那韦的结合自由能为 - 41.86 kJ/mol,布雷哌唑为 - 45.44 kJ/mol,与对照药物的 - 30.42 kJ/mol相比,表现出更高的结合亲和力,突出了它们作为乳腺癌治疗候选药物的前景。随后对这两种分子结构进行的优化几何结构和电子密度映射显示,第一个分子的吉布斯自由能为 - 2334.610哈特里,第二个为 - 1682.278316哈特里,证实与标准药物相比稳定性增强。本研究不仅突出了机器学习在药物发现中的功效,还强调了量子力学在验证分子稳定性方面的重要性,为未来的药理学探索奠定了坚实基础。此外,这种方法可能会彻底改变药物重新利用的过程,显著减少与传统药物开发方法相关的时间和成本。我们的结果为后续旨在优化这些PARP - 1抑制剂以供临床使用的研究奠定了有前景的基础,有可能为乳腺癌患者提供更有效的治疗选择。