Eckert Thomas, Zobaer M S, Boulos Jessie, Alexander-Bryant Angela, Baker Tiffany G, Rivers Charlotte, Das Arabinda, Vandergrift William A, Martinez Jaime, Zukas Alicia, Lindhorst Scott M, Patel Sunil, Strickland Ben, Rowland Nathan C
School of Medicine, University of South Carolina, Columbia, SC 29209, USA.
MUSC Institute for Neuroscience Discovery (MIND), Medical University of South Carolina, Charleston, SC 29425, USA.
Cancers (Basel). 2025 Jan 29;17(3):462. doi: 10.3390/cancers17030462.
Glioblastoma (GBM) is the most common primary malignant brain tumor, with fewer than 5% of patients surviving five years after diagnosis. The introduction of immune checkpoint inhibitors (ICIs), followed by chimeric antigen receptor (CAR) T-cell therapy, marked major advancements in oncology. Despite demonstrating efficacy in other blood and solid cancers, these therapies have yielded limited success in clinical trials for both newly diagnosed and recurrent GBM. A deeper understanding of GBM's resistance to immunotherapy is essential for enhancing treatment responses and translating results seen in other cancer models.
In this review, we examine clinical trial outcomes involving ICIs and CAR-T for GBM patients and explore the evasive mechanisms of GBM and the tumor microenvironment.
Multiple clinical trials investigating ICIs in GBM have shown poor outcomes, with no significant improvement in progression-free survival (PFS) or overall survival (OS). Results from smaller case studies with CAR-T therapy have warranted further investigation. However, no large-scale trials or robust studies have yet established these immunotherapeutic approaches as definitive treatment strategies. Future research should shift focus from addressing the scarcity of functional T cells to exploiting the abundant myeloid-derived cells within the tumor microenvironment.
Translating these therapies into effective treatments for glioblastoma in humans remains a significant challenge. The highly immunosuppressive nature of GBM and its tumor microenvironment continue to hinder the success of these innovative immunotherapeutic approaches. Targeting the myeloid-derived compartment may lead to more robust and sustained immune responses.
胶质母细胞瘤(GBM)是最常见的原发性恶性脑肿瘤,诊断后存活五年以上的患者不到5%。免疫检查点抑制剂(ICI)的引入,随后是嵌合抗原受体(CAR)T细胞疗法,标志着肿瘤学领域的重大进展。尽管这些疗法在其他血液和实体癌中显示出疗效,但在新诊断和复发性GBM的临床试验中取得的成功有限。深入了解GBM对免疫疗法的耐药性对于提高治疗反应和转化其他癌症模型中的研究结果至关重要。
在本综述中,我们研究了涉及ICI和CAR-T治疗GBM患者的临床试验结果,并探讨了GBM和肿瘤微环境的逃避机制。
多项针对GBM患者使用ICI的临床试验结果不佳,无进展生存期(PFS)或总生存期(OS)均无显著改善。CAR-T疗法的小型病例研究结果值得进一步研究。然而,尚未有大规模试验或有力研究将这些免疫治疗方法确立为明确的治疗策略。未来的研究应将重点从解决功能性T细胞的稀缺问题转移到利用肿瘤微环境中丰富的髓系来源细胞。
将这些疗法转化为人类胶质母细胞瘤的有效治疗方法仍然是一项重大挑战。GBM及其肿瘤微环境的高度免疫抑制性质继续阻碍这些创新免疫治疗方法的成功。靶向髓系来源区室可能会导致更强有力和持续的免疫反应。