Suppr超能文献

将基于成像的体外方法从生物医学研究应用于监管毒理学。

Bridging imaging-based in vitro methods from biomedical research to regulatory toxicology.

作者信息

Piergiovanni Monica, Mennecozzi Milena, Barale-Thomas Erio, Danovi Davide, Dunst Sebastian, Egan David, Fassi Aurora, Hartley Matthew, Kainz Philipp, Koch Katharina, Le Dévédec Sylvia E, Mangas Iris, Miranda Elena, Nyffeler Jo, Pesenti Enrico, Ricci Fernanda, Schmied Christopher, Schreiner Alexander, Stokar-Regenscheit Nadine, Swedlow Jason R, Uhlmann Virginie, Wieland Fredrik C, Wilson Amy, Whelan Maurice

机构信息

European Commission, Joint Research Centre (JRC), Ispra, Italy.

Preclinical Sciences and Translational Safety, Janssen Pharmaceuticals, Beerse, Belgium.

出版信息

Arch Toxicol. 2025 Apr;99(4):1271-1285. doi: 10.1007/s00204-024-03922-z. Epub 2025 Feb 13.

Abstract

Imaging technologies are being increasingly used in biomedical research and experimental toxicology to gather morphological and functional information from cellular models. There is a concrete opportunity of incorporating imaging-based in vitro methods in international guidelines to respond to regulatory requirements with human relevant data. To translate these methods from R&D to international regulatory acceptance, the community needs to implement test methods under quality management systems, assess inter-laboratory transferability, and demonstrate data reliability and robustness. This article summarises current challenges associated with image acquisition, image analysis, including artificial intelligence, and data management of imaging-based methods, with examples from the developmental neurotoxicity in vitro battery and phenotypic profiling assays. The article includes considerations on specific needs and potential solutions to design and implement future validation and transferability studies.

摘要

成像技术在生物医学研究和实验毒理学中越来越多地被用于从细胞模型收集形态学和功能信息。将基于成像的体外方法纳入国际指南,以提供与人类相关的数据来满足监管要求,这是一个切实可行的机会。为了将这些方法从研发阶段转化为国际监管机构的认可,相关领域需要在质量管理体系下实施测试方法,评估实验室间的可转移性,并证明数据的可靠性和稳健性。本文总结了基于成像方法在图像采集、图像分析(包括人工智能)和数据管理方面当前面临的挑战,并以发育神经毒性体外试验组和表型分析试验为例进行说明。本文还考虑了设计和实施未来验证及可转移性研究的特定需求和潜在解决方案。

相似文献

1
Bridging imaging-based in vitro methods from biomedical research to regulatory toxicology.
Arch Toxicol. 2025 Apr;99(4):1271-1285. doi: 10.1007/s00204-024-03922-z. Epub 2025 Feb 13.
3
MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols.
Alzheimers Dement. 2021 Apr;17(4):704-715. doi: 10.1002/alz.12215. Epub 2021 Jan 21.
4
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.
Alzheimers Dement. 2021 Apr;17(4):716-725. doi: 10.1002/alz.12216. Epub 2021 Jan 21.
6
Artificial intelligence for diagnosing exudative age-related macular degeneration.
Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2.
7
Enhancing education for children with ASD: a review of evaluation and measurement in AI tool implementation.
Disabil Rehabil Assist Technol. 2025 Mar 13:1-18. doi: 10.1080/17483107.2025.2477678.
8
Assessing risk of bias in toxicological studies in the era of artificial intelligence.
Arch Toxicol. 2025 Aug;99(8):3065-3090. doi: 10.1007/s00204-025-03978-5.
9
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.

引用本文的文献

1
Morphological profiling data resource enables prediction of chemical compound properties.
iScience. 2025 Apr 16;28(5):112445. doi: 10.1016/j.isci.2025.112445. eCollection 2025 May 16.

本文引用的文献

1
Ventral tegmental area GABA neurons integrate positive and negative valence.
bioRxiv. 2024 Dec 8:2024.12.07.627330. doi: 10.1101/2024.12.07.627330.
2
3
Evaluating batch correction methods for image-based cell profiling.
Nat Commun. 2024 Aug 2;15(1):6516. doi: 10.1038/s41467-024-50613-5.
4
Unleashing the potential of cell painting assays for compound activities and hazards prediction.
Front Toxicol. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036. eCollection 2024.
6
Statement on the toxicological properties and maximum residue levels of acetamiprid and its metabolites.
EFSA J. 2024 May 15;22(5):e8759. doi: 10.2903/j.efsa.2024.8759. eCollection 2024 May.
8
9
Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations.
Nat Methods. 2024 Jun;21(6):1114-1121. doi: 10.1038/s41592-024-02241-6. Epub 2024 Apr 9.
10
Understanding the provenance and quality of methods is essential for responsible reuse of FAIR data.
Nat Med. 2024 May;30(5):1220-1221. doi: 10.1038/s41591-024-02879-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验